Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates

Authors: Chung-Yao Yang, Lin-Ya Huang, Tang-Long Shen, J. Andrew Yeh

Abstract:

The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research.

Keywords: Nanosponge, Cell adhesion, Cell morphology

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1070613

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555

References:


[1] R. Langer and J. P. Vacanti, "Tissue engineering," Science, vol. 260, May. 1993, pp. 920-926.
[2] R. Singhvi, A. Kumar, G. Lopez, G. N. Stephanopoulos, D. I. C. Wang, and G. M. Whitesides, "Engineering cell shape and function," Science, vol. 264, Apr. 1994, pp. 696-698.
[3] S. K. W. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides, "Gradients of substrate-bound laminin orient axonal specification of neurons," Proc. Natl. Acad. Sci. USA, vol. 99, Oct. 2002, pp. 12542-12547.
[4] J. A. Burdick, A. Khademhosseini, and R. Langer, "Fabrication of gradient hydrogels using a microfluidics/photopolymerization process," Langmuir, vol. 20, May. 2004, pp. 5153-5156.
[5] K. C. Dee, D. C. Rueger, T. T. Andersen, and R. Bizios, "Conditions which promote mineralization at the bone-implant interface: a model in vitro study," Biomaterials, vol. 17, Jan. 1996, pp. 209-215.
[6] A. Rezania, C. H. Thomas, A. B. Branger, C. M. Waters, and K. E. Healy, "The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialo protein," J. Biomed. Mater. Res., vol. 37, Oct. 1997, pp. 9-19.
[7] J. A. Neff, K. D. Caldwell, and P. A. Tresco, "A novel method for surface modification to promote cell attachment to hydrophobic substrates," J. Biomed. Mater. Res., vol. 40, Dec. 1998, pp. 511-519.
[8] E. V. Romanova, S. P. Oxley, S. S. Rubakhin, P. W. Bohn, and J. V. Sweedler, "Self-assembled monolayers of alkanethiols on gold modulate electrophysiological parameters and cellular morphology of cultured neurons," Biomaterials, vol. 27, Mar. 2006, pp. 1665-1669.
[9] D. Pesen and D. B. Haviland, "Modulation of Cell Adhesion Complexes by Surface Protein Patterns," Appl. Mater. Interfaces, vol. 1, Jan. 2009, pp. 543-548.
[10] L. Chou, J. D. Firth, V. J. Uitto, and D. M. Brunette, "Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts," J. Cell Sci., vol. 108, Apr. 1995, pp. 1563-1573.
[11] B. G. Keselowsky, D. M. Collard, and A. J. García, "Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding," Biomaterials, vol. 25, Dec. 2004, pp. 5947-5954.
[12] M. J. Dalby, S. Childs, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, "Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time," Biomaterials, vol. 24, Mar. 2003, pp. 927-935.
[13] M. J. Dalby, D. Giannaras, M. O. Riehle, N. Gadegaard, S. Affrossman, and A. S. G. Curtis, "Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography," Biomaterials, vol. 25, Jan. 2004, pp. 77-83.
[14] N. H. Kwon, M. F. Beaux, C. Ebert, L. D. Wang, B. E. Lassiter, Y. H. Park, D. N. Mcllroy, C. J. Hovde, and G. A. Bohach, "Nanowire-based delivery of Escherichia coli O157 shiga toxin 1 A subunit into human and bovine cells," Nano Lett., vol. 7, Jul. 2007, pp. 2718-2723.
[15] S. Qi, C. Yi, S. Ji, C. C. Fong, and M. Yang, " Cell Adhesion and Spreading Behavior on Vertically Aligned Silicon Nanowire Arrays," Appl. Mater. Interfaces, vol. 1, Jan. 2009, pp. 30-34.
[16] S. P. Low, N. H. Voelcker, L. T. Canham, and K. A. Williams, "The biocompatibility of porous silicon in tissues of the eye," Biomaterials, vol. 30, Feb. 2009, pp.2873-2880.
[17] B. Kobrin, V. Fuentes, S. Dasaraadhi, R. Yi, R. Nowak, and J. Chinn, "An improved vapor-phase deposition technique for molecular coatings for MEMS devices," Semicon West 2004.
[18] B. Kobrin, J. Chinn, R. W. Ashurst, and R. Maboudian, "Molecular vapor deposition (MVD) for improved SAM coatings," Proc. of SPIE, vol. 5716, Jan. 2005, pp. 152-157.
[19] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, "Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles," Adv. Funct. Mater., vol. 16, Feb. 2006, pp. 387-394.
[20] C. M. Hsieh, J. Y. Chyan, W. C. Hsu, and J. A. Yeh, "Fabrication of Wafer-level Antireflective Structures in Optoelectronic Applications," in IEEE Optical MEMS, Taiwan, 2007, pp. 185-186.
[21] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, "Broadband antireflective poly-Si nanosponge for thin film solar cells," Opt. Express, vol. 17, Mar. 2009, pp. 4646-4651.
[22] T. L. Shen, A. Y. Park, A. Alcaraz, X. Peng, I. Jang, P. Koni, R. A. Flavell, H. Gu, and J. L. Guan, "Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis," J Cell Biol., vol. 169, Jun. 2005, pp. 941-952.
[23] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem., vol. 28, Apr. 1936, pp. 988-994.
[24] A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc., vol. 40, Jul. 1944, pp. 546-550.
[25] Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, "Investigation and application of an ultrahydrophobic hybrid-structured surface with anti-sticking character," J. Micromech. Microeng., vol. 19, Jul. 2009, pp. 085022.
[26] R. D. Mullins, J. A. Heuser, and T. D. Pollard, "The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments," Proc. Natl. Acad. Sci. USA, vol. 95, May. 1998, pp. 6181-6186.
[27] L. Blanchoin, K. J. Amann, H. N. Higgs, J. B. Marchand, D. A. Kaiser, T. D. Pollard, "Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins," Nature, vol. 404, Apr. 2000, pp. 1007-1077.
[28] M. A. Schwartz, M. D. Schaller, and M. H. Ginsberg, "Integrins: emerging paradigms of signal transduction," Annu. Rev. Cell Dev. Biol., vol. 11, Nov. 1995, pp. 549-599.
[29] L. A. Cary and J. L. Guan, "Focal adhesion kinase in integrin-mediated signaling," Front Biosci., vol. 4, Jan. 1999, pp. D102-113.
[30] D. D. Schlaepfer, C. R. Hauck, and D. J. Sieg, "Signaling from focal adhesion kinase," Prog Biophys. Mol. Biol., vol. 71, Mar. 1999, pp. 435-478.
[31] P. Y. Chan, S. B. Kanner, G. Whitney, and A. Aruffo, "A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK," J. Biol. Chem., vol. 269, Aug. 1994, pp. 20567-20574.
[32] B. S. Cobb, M. D. Schaller, T. H. Leu, and J. T. Parsons, "Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK," Mol. Cell Biol., vol. 14, Jan. 1994, pp. 147-155.
[33] M. D. Schaller, J. D. Hildebrand, J. D. Shannon, J. W. Fox, R. R. Vines, and J. T. Parsons, "Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src," Mol. Cell Biol., vol. 14, Aug. 1994, pp. 1680-1688.
[34] Z. Xing, H. C. Chen, J. K. Nowlen, S. J. Taylor, D. Shalloway, and J. L. Guan, "Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain," Mol. Cell Biol., vol. 5, Apr. 1994, pp. 413-421.
[35] H. C. Chen and J. L. Guan, "Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase," Proc. Natl. Acad. Sci. USA, vol. 91, Oct. 1994, pp. 10148-10152.
[36] X. Zhang, A. Chattopadhyay, Q. S. Ji, J. D. Owen, P. J. Ruest, G. Carpenter, and S. K. Hanks, "Focal adhesion kinase promotes phospholipase C-╬│1 activity," Proc. Natl. Acad. Sci. USA, vol. 96, Aug. 1999, pp. 9021-9026.
[37] D. C. Han and J. L. Guan, "Association of focal adhesion kinase with Grb7 and its role in cell migration," J. Biol. Chem., vol. 274, Aug. 1999, pp. 24425-24430.
[38] P. van der Valk, A. W. J. van Pelt, H. J. Busscher, H. P. de Jong, Ch. R. H. Wildevuur, and J. Arends, "Interaction of fibroblasts and polymer surfaces: relationship between surface free energy and fibroblast spreading," J. Biomed. Mater. Res., vol. 17, Sep. 1983, pp. 807-817.
[39] K. Webb, V. Hlady, and P. A. Tresco," Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeleton organization," J. Biomed. Mater. Res., vol. 41, Sep. 1998, pp. 422-430.
[40] Y. Arima and H. Iwata, "Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers," Biomaterials, vol. 28, Jul. 2007, pp. 3074-3082.
[41] R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, "Effects of synthetic micro- and nano-structured surfaces on cell behavior, "Biomaterials, vol. 20, Mar. 1999, pp. 573-588.
[42] B. A. Bromberek, P. A. J. Enever, D. I. Shreiber, M. D. Caldwell, and R. T. Tranquillo, "Macrophages influence a competition of contact guidance and chemotaxis for fibroblast alignment in a fibrin gel coculture assay," Exp. Cell Res., vol. 275, May. 2002, pp. 230-242.
[43] A. I. Teixeira, G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey, "Epithelial contact guidance on well-defined micro- and nanostructured substrates," J. Cell Sci., vol. 116, May. 2003, pp. 1881-1892.
[44] E. T. den Braber, J. E. de Ruijter, H. T. J. Smits, L. A. Ginsel, A. F. von Recum, and J. A. Jansen, "Effect of parallel surface microgrooves and surface energy on cell growth," J. Biomed. Mater. Res., vol. 29, Apr. 1995, pp. 511-518.
[45] G. A. Dunn and J. P. Health, "A new hypothesis of contact guidance in tissue cells," Exp. Cell Res., vol. 101, Aug. 1976, pp. 1-14.
[46] P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, "Topographical control of cell behaviour. I. Simple step cues," Development, vol. 99, Mar. 1987, pp. 439-448.