Search results for: nonlinear mathematical model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8431

Search results for: nonlinear mathematical model.

6061 Burstiness Reduction of a Doubly Stochastic AR-Modeled Uniform Activity VBR Video

Authors: J. P. Dubois

Abstract:

Stochastic modeling of network traffic is an area of significant research activity for current and future broadband communication networks. Multimedia traffic is statistically characterized by a bursty variable bit rate (VBR) profile. In this paper, we develop an improved model for uniform activity level video sources in ATM using a doubly stochastic autoregressive model driven by an underlying spatial point process. We then examine a number of burstiness metrics such as the peak-to-average ratio (PAR), the temporal autocovariance function (ACF) and the traffic measurements histogram. We found that the former measure is most suitable for capturing the burstiness of single scene video traffic. In the last phase of this work, we analyse statistical multiplexing of several constant scene video sources. This proved, expectedly, to be advantageous with respect to reducing the burstiness of the traffic, as long as the sources are statistically independent. We observed that the burstiness was rapidly diminishing, with the largest gain occuring when only around 5 sources are multiplexed. The novel model used in this paper for characterizing uniform activity video was thus found to be an accurate model.

Keywords: AR, ATM, burstiness, doubly stochastic, statisticalmultiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
6060 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm

Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli

Abstract:

Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.

Keywords: Firefly algorithm, metaheuristic algorithm, multilelvel inverter, SHEPWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
6059 Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer

Authors: G. Revathi, P. Saikrishnan

Abstract:

In the present analysis an unsteady laminar forced convection water boundary layer flow is considered. The fluid properties such as viscosity and Prandtl number are taken as variables such that those are inversely proportional to temperature. By using quasi-linearization technique the nonlinear coupled partial differential equations are linearized and the numerical solutions are obtained by using implicit finite difference scheme with the appropriate selection of step sizes. Non-similar solutions have been obtained from the starting point of the stream-wise coordinate to the point where skin friction value vanishes. The effect non-uniform mass transfer along the surface of the cylinder through slot is studied on the skin friction and heat transfer coefficients.

Keywords: Boundary layer, heat transfer, non-similar solution, non-uniform mass, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
6058 Financial Analysis Analogies for Software Risk

Authors: Masood Uzzafer

Abstract:

A dynamic software risk assessment model is presented. Analogies between dynamic financial analysis and software risk assessment models are established and based on these analogies it suggested that dynamic risk model for software projects is the way to move forward for the risk assessment of software project. It is shown how software risk assessment change during different phases of a software project and hence requires a dynamic risk assessment model to capture these variations. Further evolution of dynamic financial analysis models is discussed and mapped to the evolution of software risk assessment models.

Keywords: Software Risk Assessment, Software ProjectManagement, Software Cost, Dynamic Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
6057 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: Moving load, moving substructure, dynamic responses, forced vibration responses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
6056 Viscosity Model for Predicting the Power Output from Ocean Salinity and Temperature Energy Conversion System (OSTEC) Part 1: Theoretical Formulation

Authors: Ag. S. Abd. Hamid, S. K. Lee, J. Dayou, R. Yusoff, F. Sulaiman

Abstract:

The mixture between two fluids of different salinity has been proven to capable of producing electricity in an ocean salinity energy conversion system known as hydrocratic generator. The system relies on the difference between the salinity of the incoming fresh water and the surrounding sea water in the generator. In this investigation, additional parameter is introduced which is the temperature difference between the two fluids; hence the system is known as Ocean Salinity and Temperature Energy Conversion System (OSTEC). The investigation is divided into two papers. This first paper of Part 1 presents the theoretical formulation by considering the effect of fluid dynamic viscosity known as Viscosity Model and later compares with the conventional formulation which is Density Model. The dynamic viscosity model is used to predict the dynamic of the fluids in the system which in turns gives the analytical formulation of the potential power output that can be harvested. 

Keywords: Buoyancy, density, frictional head loss, kinetic power, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
6055 Investigation on Ship Collision Phenomena by Analytical and Finite Element Methods

Authors: Abuzar.Abazari, Saeed. Ziaei-Rad, Hoseein. Dalayeli

Abstract:

Collision is considered as a time-depended nonlinear dynamic phenomenon. The majority of researchers have focused on deriving the resultant damage of the ship collisions via analytical, experimental, and finite element methods.In this paper, first, the force-penetration curve of a head collision on a container ship with rigid barrier based on Yang and Pedersen-s methods for internal mechanic section is studied. Next, the obtained results from different analytical methods are compared with each others. Then, through a simulation of the container ship collision in Ansys Ls-Dyna, results from finite element approach are compared with analytical methods and the source of errors is discussed. Finally, the effects of parameters such as velocity, and angle of collision on the forcepenetration curve are investigated.

Keywords: Ship collision, Force-penetration curve, Damage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
6054 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution neural network, edges, face recognition, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
6053 LQG Flight Control of VTAV for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a linear-quadratic-Gaussian (LQG) flight control procedure for an unmanned helicopter model with vectored thrust configuration. This LQG control for chosen model of VTAV has been verified by simulation of take-off and landing maneuvers using software package Simulink and demonstrated good performance for fast flight stabilization of model, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Linear-Quadratic-Gaussian (LQG) controller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
6052 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
6051 Kano’s Model for Clinical Laboratory

Authors: Khaled N. El-Hashmi, Omar K.Gnieber

Abstract:

The clinical laboratory has received considerable recognition globally due to the rapid development of advanced technology, economic demands and its role in a patient’s treatment cycle. Although various cross-domain experiments and practices with respect to clinical laboratory projects are ready for the full swing, the customer needs are still ambiguous and debatable. The purpose of this study is to apply Kano’s model and customer satisfaction matrix to categorize service quality attributes in order to see how well these attributes are able to satisfy customer needs. The result reveals that ten of the 26 service quality attributes have greater impacts on highly increasing customer’s satisfaction and should be taken in consideration firstly.

Keywords: Clinical laboratory, Customer satisfaction matrix, Kano’s Model, Quality Attributes, Voice of Customer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
6050 Multilayer Soft Tissue Continuum Model: Towards Realistic Simulation of Facial Expressions

Authors: A. Hung, K. Mithraratne, M. Sagar, P. Hunter

Abstract:

A biophysically based multilayer continuum model of the facial soft tissue composite has been developed for simulating wrinkle formation. The deformed state of the soft tissue block was determined by solving large deformation mechanics equations using the Galerkin finite element method. The proposed soft tissue model is composed of four layers with distinct mechanical properties. These include stratum corneum, epidermal-dermal layer (living epidermis and dermis), subcutaneous tissue and the underlying muscle. All the layers were treated as non-linear, isotropic Mooney Rivlin materials. Contraction of muscle fibres was approximated using a steady-state relationship between the fibre extension ratio, intracellular calcium concentration and active stress in the fibre direction. Several variations of the model parameters (stiffness and thickness of epidermal-dermal layer, thickness of subcutaneous tissue layer) have been considered.

Keywords: Bio-physically based, soft tissue mechanics, facialtissue composite, wrinkling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
6049 Methodology for Quantifying the Meaning of Information in Biological Systems

Authors: Richard L. Summers

Abstract:

The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems is fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.

Keywords: Semiotic meaning, Shannon information, Lyapunov, living systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
6048 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182
6047 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries: A Case Study

Authors: A. M. Qahtani, G. B. Wills, A. M. Gravell

Abstract:

Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.

Keywords: Customisation Software Products, Global Software Engineering, Local Decision Making, Requirement Engineering, Simulation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
6046 A Supervisory Scheme for Step-Wise Safe Switching Controllers

Authors: Fotis N. Koumboulis, Maria P. Tzamtzi

Abstract:

A supervisory scheme is proposed that implements Stepwise Safe Switching Logic. The functionality of the supervisory scheme is organized in the following eight functional units: Step- Wise Safe Switching unit, Common controllers design unit, Experimentation unit, Simulation unit, Identification unit, Trajectory cruise unit, Operating points unit and Expert system unit. The supervisory scheme orchestrates both the off-line preparative actions, as well as the on-line actions that implement the Stepwise Safe Switching Logic. The proposed scheme is a generic tool, that may be easily applied for a variety of industrial control processes and may be implemented as an automation software system, with the use of a high level programming environment, like Matlab.

Keywords: Supervisory systems, safe switching, nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
6045 Formal Modeling and Verification of Software Models

Authors: Siamak Rasulzadeh

Abstract:

Graph transformation has recently become more and more popular as a general visual modeling language to formally state the dynamic semantics of the designed models. Especially, it is a very natural formalism for languages which basically are graph (e.g. UML). Using this technique, we present a highly understandable yet precise approach to formally model and analyze the behavioral semantics of UML 2.0 Activity diagrams. In our proposal, AGG is used to design Activities, then using our previous approach to model checking graph transformation systems, designers can verify and analyze designed Activity diagrams by checking the interesting properties as combination of graph rules and LTL (Linear Temporal Logic) formulas on the Activities.

Keywords: UML 2.0 Activity, Verification, Model Checking, Graph Transformation, Dynamic Semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
6044 3D Numerical Simulation of Scouring around Bridge Piers (Case Study: Bridge 524 Crosses the Tanana River)

Authors: T. Esmaeili, A. A. Dehghani, A. R. Zahiri, K. Suzuki

Abstract:

Due to the three- dimensional flow pattern interacting with bed material, the process of local scour around bridge piers is complex. Modeling 3D flow field and scour hole evolution around a bridge pier is more feasible nowadays because the computational cost and computational time have significantly decreased. In order to evaluate local flow and scouring around a bridge pier, a completely three-dimensional numerical model, SSIIM program, was used. The model solves 3-D Navier-Stokes equations and a bed load conservation equation. The model was applied to simulate local flow and scouring around a bridge pier in a large natural river with four piers. Computation for 1 day of flood condition was carried out to predict the maximum local scour depth. The results show that the SSIIM program can be used efficiently for simulating the scouring in natural rivers. The results also showed that among the various turbulence models, the k-ω model gives more reasonable results.

Keywords: Bridge piers, flood, numerical simulation, SSIIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
6043 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
6042 An Ecological Model for Three Species with Crowley–Martin Functional Response

Authors: Randhir Singh Baghel, Govind Shay Sharma

Abstract:

In this paper, we explore an ecosystem that contains a three-species food chain. The first and second species are in competition with one another for resources. However, the third species plays an important role in providing non-linear Crowley-Martin functional support for the first species. Additionally, the third species consumes the second species in a linear fashion, taking advantage of the available resources. This intricate balance ensures the survival of all three species in the ecosystem. A set of non-linear isolated first-order differential equations establish this model. We examine the system's stability at all potential equilibrium locations using the perturbed technique. Furthermore, by spending a lot of time observing the species in their natural habitat, the numerical illustrations at suitable parameter values for the model are shown.

Keywords: Competition, predator, response function, local stability, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225
6041 Modelling of a Direct Drive Industrial Robot

Authors: C. Perez, O. Reinoso, N. Garcia, J. M. Sabater, L. Gracia

Abstract:

For high-speed control of robots, a good knowledge of system modelling is necessary to obtain the desired bandwidth. In this paper, we present a cartesian robot with a pan/tilt unit in end-effector (5 dof). This robot is implemented with powerful direct drive AC induction machines. The dynamic model, parameter identification and model validation of the robot are studied (including actuators). This work considers the cartesian robot coupled and non linear (contrary to normal considerations for this type of robots). The mechanical and control architecture proposed in this paper is efficient for industrial and research application in which high speed, well known model and very high accuracy are required.

Keywords: Robot modelling, parameter identification and validation, AC servo-motors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
6040 Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer

Authors: Rida B. Arieby

Abstract:

This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.

Keywords: Cyclic test, large strain, polymers semi-crystalline, Volume strain, Thermodynamics of Irreversible Processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
6039 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
6038 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK

Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi

Abstract:

This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.

Keywords: Cement admixtures, soft soil stabilisation, geotechnical parameters, unconfined compressive strength, multi-regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
6037 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope

Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori

Abstract:

Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the ‎energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is ‎caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope ‎has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D ‎software. The numerical model is verified by experimental data of water depth in ‎stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air ‎entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence ‎models. The results showed a good agreement between numerical and experimental model‎ as ‎numerical model can be used to optimize of stilling basins.‎

Keywords: Experimental and numerical modeling, end adverse slope, flow ‎parameters, USBR II Stilling Basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
6036 Software Model for a Computer Based Training for an HVDC Control Desk Simulator

Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos

Abstract:

With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.

Keywords: Computer based training, Hypermedia, Software modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
6035 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightlydistressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the one-stage model has the lower misclassification error rate than the two-stage model. The one-stage model is more accurate than the two-stage model.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
6034 Effect of Iterative Algorithm on the Performance of MC-CDMA System with Nonlinear Models of HPA

Authors: R. Blicha

Abstract:

High Peak to Average Power Ratio (PAPR) of the transmitted signal is a serious problem in multicarrier systems (MC), such as Orthogonal Frequency Division Multiplexing (OFDM), or in Multi-Carrier Code Division Multiple Access (MC-CDMA) systems, due to large number of subcarriers. This effect is possible reduce with some PAPR reduction techniques. Spreading sequences at the presence of Saleh and Rapp models of high power amplifier (HPA) have big influence on the behavior of system. In this paper we investigate the bit-error-rate (BER) performance of MC-CDMA systems. Basically we can see from simulations that the MC-CDMA system with Iterative algorithm can be providing significantly better results than the MC-CDMA system. The results of our analyses are verified via simulation.

Keywords: MC-CDMA, Iterative algorithm, PAPR, BER, Saleh, Rapp, Spreading Sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
6033 Effects of Li2O Thickness and Moisture Content on LiH Hydrolysis Kinetics in Slightly Humidified Argon

Authors: S. Xiao, M. B. Shuai, M. F. Chu

Abstract:

The hydrolysis kinetics of polycrystalline lithium hydride (LiH) in argon at various low humidities was measured by gravimetry and Raman spectroscopy with ambient water concentration ranging from 200 to 1200 ppm. The results showed that LiH hydrolysis curve revealed a paralinear shape, which was attributed to two different reaction stages that forming different products as explained by the 'Layer Diffusion Control' model. Based on the model, a novel two-stage rate equation for LiH hydrolysis reactions was developed and used to fit the experimental data for determination of Li2O steady thickness Hs and the ultimate hydrolysis rate vs. The fitted data presented a rise of Hs as ambient water concentration cw increased. However, in spite of the negative effect imposed by Hs increasing, the upward trend of vs remained, which implied that water concentration, rather than Li2O thickness, played a predominant role in LiH hydrolysis kinetics. In addition, the proportional relationship between vsHs and cw predicted by rate equation and confirmed by gravimetric data validated the model in such conditions.

Keywords: Hydrolysis kinetics, ‘Layer Diffusion Control’ model, Lithium hydride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
6032 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610