Search results for: optical crosstalk
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 638

Search results for: optical crosstalk

428 Fiber Optic Sensors

Authors: Bahareh Gholamzadeh, Hooman Nabovati

Abstract:

Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. these kinds of sensors modulates some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. The advantages of fiber optic sensors in contrast to conventional electrical ones make them popular in different applications and now a day they consider as a key component in improving industrial processes, quality control systems, medical diagnostics, and preventing and controlling general process abnormalities. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field.

Keywords: Fiber optic sensors, distributed sensors, sensorapplication, crack sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6526
427 Sol-gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: N. H. Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dipcoating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral domains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: Dip coating, mono-Si, titanium oxide, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
426 High Energy Dual-Wavelength Mid-Infrared Extracavity KTA Optical Parametric Oscillator

Authors: Hongjun Liu, Qibing Sun, Nan Huang, Shaolan Zhu, Wei Zhao

Abstract:

A high energy dual-wavelength extracavity KTA optical parametric oscillator (OPO) with excellent stability and beam quality, which is pumped by a Q-switched single-longitudinal-mode Nd:YAG laser, has been demonstrated based on a type II noncritical phase matching (NCPM) KTA crystal. The maximum pulse energy of 10.2 mJ with the output stability of better than 4.1% rms at 3.467 μm is obtained at the repetition rate of 10 Hz and pulse width of 2 ns, and the 11.9 mJ of 1.535 μm radiation is obtained simultaneously. This extracavity NCPM KTA OPO is very useful when high energy, high beam quality and smooth time domain are needed.

Keywords: mid-infrared laser, OPO, dual-wavelength laser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
425 Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material

Authors: Grace Sahaya Sheba, P. Omegala Priyakumari, M. Gunasekaran

Abstract:

L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied

Keywords: Characterization, Microhardnes, Non-linear optical materials, Solution growth, Spectroscopy, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
424 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov, Viktor M. Denisov

Abstract:

This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The COTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc.).

Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
423 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: Optical density, specific optical density, transmittance, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
422 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, Optical Forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
421 A Novel Method for Areal Surface Roughness Measurement

Authors: Romuald Synak, Wlodzimierz Lipinski, Marcin Pawelczak

Abstract:

An area-integrating method that uses the technique of total integrated light scatter for evaluating the root mean square height of the surface Sq has been presented in the paper. It is based on the measurement of the scatter power using a flat photodiode integrator rather than an optical sphere or a hemisphere. By this means, one can obtain much less expensive and smaller instruments than traditional ones. Thanks to this, they could find their application for surface control purposes, particularly in small and medium size enterprises. A description of the functioning of the measuring unit as well as the impact caused by different factors on its properties is presented first. Next, results of measurements of the Sq values performed for optical, silicon and metal samples have been shown. It has been also proven that they are in a good agreement with the results obtained using the Ulbricht sphere instrument.

Keywords: ISO 25178 Standard, scatterometry, surface metrology, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
420 Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Authors: Basavaraj Vadavadagi, Satishkumar Shekhawat

Abstract:

Interstitial free steels possess better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

Keywords: Forming limit diagram, Limiting Dome Height, optical strain measurement, interstitial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
419 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats

Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen

Abstract:

With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 g. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.

Keywords: Fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182
418 A Fiber Optic Interferometric Sensor for Dynamic Measurement

Authors: N. Sathitanon, S. Pullteap

Abstract:

An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.

Keywords: Optical fiber sensors, dynamic displacement, fringe counting, reference displacement sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
417 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: FSO, RF, hybrid, AF, DF, SER, SNR, GG channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
416 Performance of InGaN/GaN Laser Diode Based on Quaternary Alloys Stopper and Superlattice Layers

Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan

Abstract:

The optical properties of InGaN/GaN laser diode based on quaternary alloys stopper and superlattice layers are numerically studied using ISE TCAD (Integrated System Engineering) simulation program. Improvements in laser optical performance have been achieved using quaternary alloy as superlattice layers in InGaN/GaN laser diodes. Lower threshold current of 18 mA and higher output power and slope efficiency of 22 mW and 1.6 W/A, respectively, at room temperature have been obtained. The laser structure with InAlGaN quaternary alloys as an electron blocking layer was found to provide better laser performance compared with the ternary AlxGa1-xN blocking layer.

Keywords: Nitride semiconductors, InAlGaN quaternary, laserdiode, superlattice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
415 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N  is candidate to be clusterized nuclei or not. In order to check this  attendance, we have measured the angular distributions for 14N ion  beam elastically scattered on 12C target nuclei at different low  energies; 17.5, 21, and 24.5MeV which are close to the Coulomb  barrier energy for 14N+12C nuclear system. Study of various transfer  reactions could provide us with useful information about the  attendance of nuclei to be in a composite form (core + valence). The  experimental data were analyzed using two approaches;  Phenomenological (Optical Potential) and semi-microscopic (Double  Folding Potential). The agreement between the experimental data and  the theoretical predictions is fairly good in the whole angular range.

 

Keywords: Deuteron Transfer, Elastic Scattering, Optical Model, Double Folding, Density Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
414 MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: MATLAB, SANTAD, in-service transmission surveillance, self restoration, fiber fault, FTTH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
413 Photonic Crystals for Novel Applications in Integrated-Optic Communication Systems and Devices

Authors: Vijay Janyani, Neetu Joshi, Jigyasa Pagaria, Parul Pathak

Abstract:

Photonic Crystal (PhC) based devices are being increasingly used in multifunctional, compact devices in integrated optical communication systems. They provide excellent controllability of light, yet maintaining the small size required for miniaturization. In this paper, the band gap properties of PhCs and their typical applications in optical waveguiding are considered. Novel PhC based applications such as nonlinear switching and tapers are considered and simulation results are shown using the accurate time-domain numerical method based on Finite Difference Time Domain (FDTD) scheme. The suitability of these devices for novel applications is discussed and evaluated.

Keywords: Band gap engineering, Nonlinear switching, Photonic crystals, PhC tapers, waveguides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
412 The Effects of Signal Level of the Microwave Generator on the Brillouin Gain Spectrum in BOTDA and BOTDR

Authors: M. Yucel, M. Yucel, N. F. Ozturk, H. H. Goktas, C. Gemci, F. V. Celebi

Abstract:

In this study, Brillouin Gain Spectrum (BGS) is experimentally analyzed in the Brillouin Optical Time Domain Reflectometry (BOTDR) and Brillouin Optical Time Domain Analyzer (BOTDA). For this purpose, the signal level of the microwave generator is varied and the effects of BGS are investigated. In the setups, 20 km conventional single mode fiber is used to both setups and laser wavelengths are selected around 1550 nm. To achieve best results, it can be used between 5 dBm to 15 dBm signal level of microwave generator for BOTDA and BOTDR setups.

Keywords: Microwave signal level, Brillouin gain spectrum, BOTDA, BOTDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
411 55 dB High Gain L-Band EDFA Utilizing Single Pump Source

Authors: M. H. Al-Mansoori, W. S. Al-Ghaithi, F. N. Hasoon

Abstract:

In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression.

Keywords: Optical amplifiers, EDFA, L-band, optical networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
410 FWM Wavelength Conversion Analysis in a 3-Integrated Portion SOA and DFB Laser using Coupled Wave Approach and FD-BPM Method

Authors: M. K. Moazzam, A. Salmanpour, M. Nirouei

Abstract:

In this paper we have numerically analyzed terahertzrange wavelength conversion using nondegenerate four wave mixing (NDFWM) in a SOA integrated DFB laser (experiments reported both in MIT electronics and Fujitsu research laboratories). For analyzing semiconductor optical amplifier (SOA), we use finitedifference beam propagation method (FDBPM) based on modified nonlinear SchrÖdinger equation and for distributed feedback (DFB) laser we use coupled wave approach. We investigated wavelength conversion up to 4THz probe-pump detuning with conversion efficiency -5dB in 1THz probe-pump detuning for a SOA integrated quantum-well

Keywords: distributed feedback laser, nondegenerate fourwave mixing, semiconductor optical amplifier, wavelengthconversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
409 Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR

Authors: M. Soryani, N. Rafat

Abstract:

Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.

Keywords: Feature Subset Selection, Genetic Algorithms, Optical Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
408 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: Exciton, Refractive index change, Extinction ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
407 Evaluation of Multilevel Modulation Formats for 100Gbps Transmission with Direct Detection

Authors: Majed Omar Al-Dwairi

Abstract:

This paper evaluate the multilevel modulation for different techniques such as amplitude shift keying (M-ASK), MASK, differential phase shift keying (M-ASK-Bipolar), Quaternary Amplitude Shift Keying (QASK) and Quaternary Polarization-ASK (QPol-ASK) at a total bit rate of 107 Gbps. The aim is to find a costeffective very high speed transport solution. Numerical investigation was performed using Monte Carlo simulations. The obtained results indicate that some modulation formats can be operated at 100Gbps in optical communication systems with low implementation effort and high spectral efficiency.

Keywords: Optical communication, multilevel amplitude shift keying (M-ASK), Differential phase shift keying (DPSK), Quaternary Amplitude Shift Keying (QASK), Quaternary Polarization-ASK (QPol-ASK).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
406 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

Authors: A. Mínguez-Martínez, J. de Vicente

Abstract:

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. In this paper, we propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments, by applying minor changes.

Keywords: Industrial environment, confocal microscope, optical measuring instrument, traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
405 Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma

Authors: M. Hanif, M. Salik

Abstract:

In the present research work we present the optical emission studies of the Indium (In) – Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (In I) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.

Keywords: Indium – Tin plasma, laser ablation, optical emission spectroscopy, electron temperature, and electron number density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
404 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
403 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam

Abstract:

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
402 New Investigation of the Exchange Effects Role on the Elastic and Inelastic Scattering of α-Particles on 9Be

Authors: A. Amar, N. Burtebayev, Zh. K. Kerimkulov, M. K. Baktybayev, J. T. Burtebayeva, A. K. Morzabayev, S. K. Sakhiev, N. Saduyev, S. B. Sakuta

Abstract:

Elastic and inelastic scattering of α-particles by 9Be nuclei at different incident energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by 9Be at different energies have been obtained. Coupled Reaction Channel (CRC) of elastic scattering, inelastic scattering and transfer reaction has been calculated using Fresco Code. The effect of involving CRC calculations on the analysis of differential cross section has been studied. The transfer reaction of (5He) in the reaction 9Be(α,9Be)α has been studied. The spectroscopic factor of 9Be≡α+5He has been extracted.

Keywords: Elastic scattering of α-particles, Optical model parameters, Coupled Reaction Channel, the transfer reaction of (5He), the spectroscopic factor of 9Be≡α+5He.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956
401 Device for 3D Analysis of Basic Movements of the Lower Extremity

Authors: Jiménez Villanueva Mayra Alejandra, Ortíz Casallas Diana Carolina, Luengas Contreras Lely Adriana

Abstract:

This document details the process of developing a wireless device that captures the basic movements of the foot (plantar flexion, dorsal flexion, abduction, adduction.), and the knee movement (flexion). It implements a motion capture system by using a hardware based on optical fiber sensors, due to the advantages in terms of scope, noise immunity and speed of data transmission and reception. The operating principle used by this system is the detection and transmission of joint movement by mechanical elements and their respective measurement by optical ones (in this case infrared). Likewise, Visual Basic software is used for reception, analysis and signal processing of data acquired by the device, generating a 3D graphical representation in real time of each movement. The result is a boot in charge of capturing the movement, a transmission module (Implementing Xbee Technology) and a receiver module for receiving information and sending it to the PC for their respective processing. The main idea with this device is to help on topics such as bioengineering and medicine, by helping to improve the quality of life and movement analysis.

Keywords: abduction, adduction, A / D converter, Autodesk 3DMax, Infrared Diode, Driver, extension, flexion, Infrared LEDs, Interface, Modeling OPENGL, Optical Fiber, USB CDC(Communications Device Class), Virtual Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
400 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Spectrum Analyzer

Authors: Osama Terra, Hatem Hussein, Adriaan Van Brakel

Abstract:

Dense wavelength division multiplexing (DWDM) technology requires tight specification and therefore measurement of wavelength accuracy and stability of the telecommunication lasers. Thus, calibration of the used Optical Spectrum Analyzers (OSAs) that are used to measure wavelength is of a great importance. Proficiency testing must be performed on such measuring activity to insure the accuracy of the measurement results. In this paper, a new comparison scheme is introduced to test the performance of such calibrations. This comparison scheme is implemented between NIS-Egypt and NMISA-South Africa for the calibration of the wavelength scale of an OSA. Both institutes employ reference gas cell to calibrate OSA according to the standard IEC/ BS EN 62129 (2006). The result of this comparison is compiled in this paper.

Keywords: OSA calibration, HCN gas cell, DWDM technology, wavelength measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
399 Basic Research for Electroretinogram Moving the Center of the Multifocal Hexagonal Stimulus Array

Authors: Naoto Suzuki

Abstract:

Many ophthalmologists can examine declines in visual sensitivity at arbitrary points on the retina using a precise perimetry device with a fundus camera function. However, the retinal layer causing the decline in visual sensitivity cannot be identified by this method. We studied an electroretinogram (ERG) function that can move the center of the multifocal hexagonal stimulus array in order to investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy, and multiple evanescent white dot syndrome. An electroretinographic optical system, specifically a perimetric optical system, was added to an experimental device carrying the same optical system as a fundus camera. We also added an infrared camera, a cold mirror, a halogen lamp, and a monitor. The software was generated to show the multifocal hexagonal stimulus array on the monitor using C++Builder XE8 and to move the center of the array up and down as well as back and forth. We used a multifunction I/O device and its design platform LabVIEW for data retrieval. The plate electrodes were used to measure electrodermal activities around the eyes. We used a multifocal hexagonal stimulus array with 37 elements in the software. The center of the multifocal hexagonal stimulus array could be adjusted to the same position as the examination target of the precise perimetry. We successfully added the moving ERG function to the experimental ophthalmologic device.

Keywords: Moving ERG, precise perimetry, retinal layers, visual sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783