Search results for: Train formation
769 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique
Authors: B. Selma, S. Chouraqui
Abstract:
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.
Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785768 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes
Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suraini Abu Bakar
Abstract:
Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These studies focus on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this modification for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).The nanocomposites MWCNTs-calixarene have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications.
Keywords: Calixarene, Multiwalled Carbon Nanotubes, Cadmium, Surface Potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820767 MR-Implantology: Exploring the Use for Mixed Reality in Dentistry Education
Authors: Areej R. Banjar, Abraham G. Campbell
Abstract:
The use of Mixed Reality (MR) in teaching and training is growing popular and can improve students’ ability to perform technical procedures. This paper outlines the creation of an interactive educational MR 3D application that aims to improve the quality of instruction for dentistry students. This application is called ”MR-Implantology” and aims to teach and train dentistry students on single dental implant placement. MR-Implantology uses cone-beam computed tomography (CBCT) images as the source for 3D dental models that dentistry students will be able to freely manipulate within a 3D MR world to aid their learning process.
Keywords: Cone-Beam Computed Tomography, dentistry education, implantology, Mixed Reality, MR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505766 Influence of Cell-free Proteins in the Nucleation of CaCO3 Crystals in Calcified Endoskeleton
Authors: M. Azizur Rahman, Tamotsu Oomori
Abstract:
Calcite aCalcite and aragonite are the two common polymorphs of CaCO3 observed as biominerals. It is universal that the sea water contents a high Mg2+ (50mM) relative to Ca2+ (10mM). In vivo crystallization, Mg2+ inhibits calcite formation. For this reason, stony corals skeleton may be formed only aragonite crystals in the biocalcification. It is special in case of soft corals of which formed only calcite crystal; however, this interesting phenomenon, still uncharacterized in the marine environment, has been explored in this study using newly purified cell-free proteins isolated from the endoskeletal sclerites of soft coral. By recording the decline of pH in vitro, the control of CaCO3 nucleation and crystal growth by the cellfree proteins was revealed. Using Atomic Force Microscope, here we find that these endoskeletal cell-free proteins significantly design the morphological shape in the molecular-scale kinetics of crystal formation and those proteins act as surfactants to promote ion attachment at calcite steps.nd aragonite are the two common polymorphs of CaCO3 observed as biominerals. It is universal that the sea water contents a high Mg2+ (50mM) relative to Ca2+ (10mM). In vivo crystallization, Mg2+ inhibits calcite formation. For this reason, stony corals skeleton may be formed only aragonite crystals in the biocalcification. It is special in case of soft corals of which formed only calcite crystal; however, this interesting phenomenon, still uncharacterized in the marine environment, has been explored in this study using newly purified cell-free proteins isolated from the endoskeletal sclerites of soft coral. By recording the decline of pH in vitro, the control of CaCO3 nucleation and crystal growth by the cell-free proteins was revealed. Using Atomic Force Microscope, here we find that these endoskeletal cell-free proteins significantly design the morphological shape in the molecular-scale kinetics of crystal formation and those proteins act as surfactants to promote ion attachment at calcite steps. KeywordsBiomineralization, Calcite, Cell-free protein, Soft coralKeywords: Biomineralization, Calcite, Cell-free protein, Soft coral
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551765 Customer Adoption and Attitudes in Mobile Banking in Sri Lanka
Authors: Prasansha Kumari
Abstract:
This paper intends to identify and analyze customer adoption and attitudes towards mobile banking facilities. The study uses six perceived characteristics of innovation that can be used to form a favorable or unfavorable attitude toward an innovation, namely: Relative advantage, compatibility, complexity, trailability, risk, and observability. Collected data were analyzed using Pearson Chi-Square test. The results showed that mobile bank users were predominantly males. There is a growing trend among young, educated customers towards converting to mobile banking in Sri Lanka. The research outcomes suggested that all the six factors are statistically highly significant in influencing mobile banking adoption and attitude formation towards mobile banking in Sri Lanka. The major reasons for adopting mobile banking services are the accessibility and availability of services regardless of time and place. Over the 75 percent of the respondents mentioned that savings in time and effort and low financial costs of conducting mobile banking were advantageous. Issue of security was found to be the most important factor that motivated consumer adoption and attitude formation towards mobile banking. Main barriers to mobile banking were the lack of technological skills, the traditional cash‐carry banking culture, and the lack of awareness and insufficient guidance to using mobile banking.Keywords: Compatibility, complexity, mobile banking, risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682764 Process and Supply-Chain Optimization for Testing and Verification of Formation Tester/Pressure-While- Drilling Tools
Authors: Vivek V, Hafeez Syed, Darren W Terrell, Harit Naik, Halliburton
Abstract:
Applying a rigorous process to optimize the elements of a supply-chain network resulted in reduction of the waiting time for a service provider and customer. Different sources of downtime of hydraulic pressure controller/calibrator (HPC) were causing interruptions in the operations. The process examined all the issues to drive greater efficiencies. The issues included inherent design issues with HPC pump, contamination of the HPC with impurities, and the lead time required for annual calibration in the USA. HPC is used for mandatory testing/verification of formation tester/pressure measurement/logging-while drilling tools by oilfield service providers, including Halliburton. After market study andanalysis, it was concluded that the current HPC model is best suited in the oilfield industry. To use theexisting HPC model effectively, design andcontamination issues were addressed through design and process improvements. An optimum network is proposed after comparing different supply-chain models for calibration lead-time reduction.Keywords: Hydraulic Pressure Controller/Calibrator, M/LWD, Pressure, FTWD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453763 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon
Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov
Abstract:
A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.
Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083762 Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum
Authors: A. Magesh, B. Preetha, T. Viruthagiri
Abstract:
Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.Keywords: Fusarium oxysporum, Lignocellulosic biomass, Product formation kinetics, Statistical experimental design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637761 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell
Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková
Abstract:
In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI) bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.
Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104760 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.
Keywords: ASTEC, Accident Source Term Evaluation Code, quantum chemical methods, severe nuclear accident, thermochemical database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821759 Biosynthesis and Metabolism of Anthraquinone Derivatives
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina
Abstract:
In review the generalized data about biosynthetic routs formation anthraquinone molecules in natural cells. The basic possibilities of various ways of biosynthesis of different quinoid substances are shown.
Keywords: Anthraquinones, biochemical evolution, biosynthesis, metabolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3965758 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021757 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space
Authors: Amir Hadi Ziaie
Abstract:
In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.Keywords: Gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434756 Impact of Combustion of Water in Fuel on Polycyclic Aromatic Hydrocarbon (Pah-s)Precursors- Formation
Authors: Abdulaziz H. El-Sinawi
Abstract:
Some of the polycyclic aromatic hydrocarbons (PAHs) are the strongest known carcinogens compounds; the majority of them are mostly produced by the incomplete combustion of fossil fuels; Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) where diesel emission is one of the main sources of such compounds available in the ambient air. There is a big concern about the increasing concentration of PAHs in the environment. Researchers are trying to explore optimal methods to reduce those pollutants and improve the quality of air. Water blended fuel is one of the possible approaches to reduce emission of PAHs from the combustion of diesel in urban and domestic vehicles. In this work a modeling study was conducted using CHEMKIN-PRO software to simulate spray combustion at similar diesel engine conditions. Surrogate fuel of (80 % n-heptane and 20 % toluene) was used due to detailed kinetic and thermodynamic data needed for modeling is available for this kind of fuel but not available for diesel. An emulsified fuel with 3, 5, 8, 10 and 20 % water by volume is used as an engine feed for this study. The modeling results show that water has a significant effect on reducing engine soot and PAHs precursors formation up to certain extent.Keywords: Polycyclic Aromatic Hydrocarbons (PAHs), DieselEngine, Emission, Surrogate Fuel, Emulsified Fuel, Soot precursors, Combustion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992755 Limit Cycle Behaviour of a Neural Controller with Delayed Bang-Bang Feedback
Authors: Travis Wiens, Greg Schoenau, Rich Burton
Abstract:
It is well known that a linear dynamic system including a delay will exhibit limit cycle oscillations when a bang-bang sensor is used in the feedback loop of a PID controller. A similar behaviour occurs when a delayed feedback signal is used to train a neural network. This paper develops a method of predicting this behaviour by linearizing the system, which can be shown to behave in a manner similar to an integral controller. Using this procedure, it is possible to predict the characteristics of the neural network driven limit cycle to varying degrees of accuracy, depending on the information known about the system. An application is also presented: the intelligent control of a spark ignition engine.Keywords: Control and automation, artificial neural networks, limit cycle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277754 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.
Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382753 Formation of Vasoactive Amines in Dry Fermented Sausage Petrovská Klobása during Drying and Ripening in Traditional and Industrial Conditions
Authors: Tatjana A. Tasić, Predrag M. Ikonić, Ljiljana S. Petrović, Marija R. Jokanović, Vladimir M. Tomović, Branislav V. Šojić, Snežana B. Škaljac
Abstract:
Formation of histamine, tryptamine, phenylethylamine and tyramine (vasoactive amines) in dry fermented sausage Petrovská klobása during drying and ripening in traditional room (B1) and industrial ripening chamber (B3) were investigated. Dansyl chloride derivatized vasoactive amines were determined using HPLC-DAD on Eclipse XDB-C18 column.
Histamine, the most important amine from food safety point of view, was not detected in any analyzed sample. Unlike most of the other fermented sausages, where tyramine is reported as the most abundant amine, in Petrovská klobása tryptamine was the most abundant vasoactive amine in both groups of sausages even though concentrations of tryptamine and tyramine in B3 sausages at the end of ripening were nearly the same (39.8 versus 39.6mg/kg). Sum of vasoactive amines in samples varied from not detected ND (B3) to 176 mg/kg (B1), with concentration of 36.1 (B3) and 73.6 (B1) mg/kg at the end of drying and 96 (B3) and 176 (B1) mg/kg at the end of ripening period. Although the sum of vasoactive amines has increased from the end of drying (45. and 90. day) to the end of ripening period (120. day), during whole production period these values did not exceed 200 mg/kg proposed as possible indicator of hygienic conditions and GMP in the sausage production.
Keywords: Vasoactive amines, traditional dry fermented sausage Petrovská klobása.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008752 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865751 Emission Assessment of Rice Husk Combustion for Power Production
Authors: Thipwimon Chungsangunsit, Shabbir H. Gheewala, Suthum Patumsawad
Abstract:
Rice husk is one of the alternative fuels for Thailand because of its high potential and environmental benefits. Nonetheless, the environmental profile of the electricity production from rice husk must be assessed to ensure reduced environmental damage. A 10 MW pilot plant using rice husk as feedstock is the study site. The environmental impacts from rice husk power plant are evaluated by using the Life Cycle Assessment (LCA) methodology. Energy, material and carbon balances have been determined for tracing the system flow. Carbon closure has been used for describing of the net amount of CO2 released from the system in relation to the amount being recycled between the power plant and the CO2 adsorbed by rice husk. The transportation of rice husk to the power plant has significant on global warming, but not on acidification and photo-oxidant formation. The results showed that the impact potentials from rice husk power plant are lesser than the conventional plants for most of the categories considered; except the photo-oxidant formation potential from CO. The high CO from rice husk power plant may be due to low boiler efficiency and high moisture content in rice husk. The performance of the study site can be enhanced by improving the combustion efficiency.
Keywords: Environmental impact, Fossil fuels, Life Cycle Assessment (LCA), Renewable energy, Rice husk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7440750 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete
Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir
Abstract:
Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.
Keywords: Concrete, conductance, deterioration, freezing and thawing, ordinary Portland cement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322749 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks
Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat
Abstract:
Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.
Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983748 Impact of the Operation and Infrastructure Parameters to the Railway Track Capacity
Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Matej Babin
Abstract:
The railway transport is considered as a one of the most environmentally friendly mode of transport. With future prediction of increasing of freight transport there are lines facing problems with demanded capacity. Increase of the track capacity could be achieved by infrastructure constructive adjustments. The contribution shows how the travel time can be minimized and the track capacity increased by changing some of the basic infrastructure and operation parameters, for example, the minimal curve radius of the track, the number of tracks, or the usable track length at stations. Calculation of the necessary parameter changes is based on the fundamental physical laws applied to the train movement, and calculation of the occupation time is dependent on the changes of controlling the traffic between the stations.Keywords: Curve radius, maximum curve speed, track mass capacity, reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806747 A Study of Wind Speed Characteristic in PI Controller based DFIG Wind Turbine
Authors: T. Unchim, A. Oonsivilai
Abstract:
The Wind Turbine Modeling in Wind Energy Conversion System (WECS) using Doubly-Fed Induction Generator (DFIG) PI Controller based design is presented. To study about the variable wind speed. The PI controller performs responding to the dynamic performance. The objective is to study the characteristic of wind turbine and finding the optimum wind speed suitable for wind turbine performance. This system will allow the specification setting (2.5MW). The output active power also corresponding same the input is given. And the reactive power produced by the wind turbine is regulated at 0 Mvar. Variable wind speed is optimum for drive train performance at 12.5 m/s (at maximum power coefficient point) from the simulation of DFIG by Simulink is described.
Keywords: DFIG, wind speed, PI controller, the output power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3327746 Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs
Authors: Hao Liu, Lihui Zheng, Chinedu J. Okere, Chao Wang, Xiangchun Wang, Peng Zhang
Abstract:
The coalbed methane (CBM) extraction industry (an unconventional energy source) has not established guidelines for experimental evaluation of sensitivity damage for coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide the future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.
Keywords: Coalbed methane, formation damage, permeability, unconventional energy source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385745 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: Segmentation, color-texture, neural networks, fractal, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374744 Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling
Authors: M. R. Nematollahi
Abstract:
Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N.Keywords: Subcooled boiling, vibration mechanism, bubble behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541743 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894742 Agreement Options in Multi-person Decision on Optimizing High-Rise Building Columns
Authors: Christiono Utomo, Arazi Idrus, Madzlan Napiah, Mohd. Faris Khamidi
Abstract:
This paper presents a conceptual model of agreement options for negotiation support in multi-person decision on optimizing high-rise building columns. The decision is complicated since many parties involved in choosing a single alternative from a set of solutions. There are different concern caused by differing preferences, experiences, and background. Such building columns as alternatives are referred to as agreement options which are determined by identifying the possible decision maker group, followed by determining the optimal solution for each group. The group in this paper is based on three-decision makers preferences that are designer, programmer, and construction manager. Decision techniques applied to determine the relative value of the alternative solutions for performing the function. Analytical Hierarchy Process (AHP) was applied for decision process and game theory based agent system for coalition formation. An n-person cooperative game is represented by the set of all players. The proposed coalition formation model enables each agent to select individually its allies or coalition. It further emphasizes the importance of performance evaluation in the design process and value-based decision.Keywords: Agreement options, coalition, group choice, game theory, building columns selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624741 Behavior of Droplets in Microfluidic System with T-Junction
Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud
Abstract:
Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.
Keywords: Microfluidic system, micro droplets generation, T-junction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617740 The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels
Authors: Esam M. Alawadhi, Raed I. Bourisli
Abstract:
Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.Keywords: Vortex shedding, pulsating flow, wavy channel, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911