Search results for: Retinopathy.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22

Search results for: Retinopathy.

22 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy

Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo

Abstract:

Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.

Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
21 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
20 Automatic Microaneurysm Quantification for Diabetic Retinopathy Screening

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Microaneurysm is a key indicator of diabetic retinopathy that can potentially cause damage to retina. Early detection and automatic quantification are the keys to prevent further damage. In this paper, which focuses on automatic microaneurysm detection in images acquired through non-dilated pupils, we present a series of experiments on feature selection and automatic microaneurysm pixel classification. We found that the best feature set is a combination of 10 features: the pixel-s intensity of shade corrected image, the pixel hue, the standard deviation of shade corrected image, DoG4, the area of the candidate MA, the perimeter of the candidate MA, the eccentricity of the candidate MA, the circularity of the candidate MA, the mean intensity of the candidate MA on shade corrected image and the ratio of the major axis length and minor length of the candidate MA. The overall sensitivity, specificity, precision, and accuracy are 84.82%, 99.99%, 89.01%, and 99.99%, respectively.

Keywords: Diabetic retinopathy, microaneurysm, naive Bayes classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
19 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
18 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.

Keywords: Diabetic retinopathy, microaneurysm, Naïve Bayes classifier, SVM classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6106
17 Basic Research for Distinguishing Small Retinal Hemorrhages from Dust Artifact by using Hue, Lightness, and Saturation Color Space

Authors: Naoto Suzuki

Abstract:

To distinguish small retinal hemorrhages in early diabetic retinopathy from dust artifacts, we analyzed hue, lightness, and saturation (HLS) color spaces. The fundus of 5 patients with diabetic retinopathy was photographed. For the initial experiment, we placed 4 different colored papers on the ceiling of a darkroom. Using each color, 10 fragments of house dust particles on a magnifier were photographed. The colored papers were removed, and 3 different colored light bulbs were suspended from the ceiling. Ten fragments of house dust particles on the camera-s object lens were photographed. We then constructed an experimental device that can photograph artificial eyes. Five fragments of house dust particles under the ocher fundus of the artificial eye were photographed. On analyzing HLS color space of the dust artifact, lightness and saturation were found to be highly sensitive. However, hue was not highly sensitive.

Keywords: Dust artifact, HLS color space, Retinal hemorrhage, and Diabetic retinopathy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
16 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms

Authors: Daniela Matei, Radu Matei

Abstract:

In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.

Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
15 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy

Authors: S.Jerald Jeba Kumar, M.Madheswaran

Abstract:

The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..

Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
14 Distinction between Manifestations of Diabetic Retinopathy and Dust Artifacts Using Three-Dimensional HSV Color Space

Authors: Naoto Suzuki

Abstract:

Many ophthalmologists find it difficult to distinguish between small retinal hemorrhages and dust artifacts when using fundus photography for the diagnosis of diabetic retinopathy. Six patients with diabetic retinopathy underwent fundus photography, which revealed dust artifacts in the photographs of some patients. We constructed an experimental device similar to the optical system of the fundus camera and colored the fundi of the artificial eyes with khaki, sunset, rose and sunflower colors. Using the experimental device, we photographed dust artifacts using each artificial eyes. We used Scilab 5.4.0 and SIVP 0.5.3 softwares to convert the red, green, and blue (RGB) color space to the hue, saturation, and value (HSV) color space. We calculated the differences between the areas of manifestations and perimanifestations and the areas of dust artifacts and periartifacts using average HSVs. The V values in HSV for the manifestations were as follows: hemorrhages, 0.06 ± 0.03; hard exudates, −0.12 ± 0.06; and photocoagulation marks, 0.07 ± 0.02. For dust artifacts, visualized in the human and artificial eyes, the V values were as follows: human eye, 0.19 ± 0.03; khaki, 0.41 ± 0.02; sunset, 0.43 ± 0.04; rose, 0.47 ± 0.11; and sunflower, 0.59 ± 0.07. For the human and artificial eyes, we calculated two sensitivity values of dust artifacts compared to manifestation areas. V values of the HSV color space enabled the differentiation of small hemorrhages, hard exudates, and photocoagulation marks from dust artifacts.

Keywords: Diabetic retinopathy, HSV color space, small hemorrhages, hard exudates, photocoagulation marks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
13 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: Ocular diseases, retinal fundus image, optic disc detection and segmentation, fully convolutional network, overlap measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
12 Automated Optic Disc Detection in Retinal Images of Patients with Diabetic Retinopathy and Risk of Macular Edema

Authors: Arturo Aquino, Manuel Emilio Gegundez, Diego Marin

Abstract:

In this paper, a new automated methodology to detect the optic disc (OD) automatically in retinal images from patients with risk of being affected by Diabetic Retinopathy (DR) and Macular Edema (ME) is presented. The detection procedure comprises two independent methodologies. On one hand, a location methodology obtains a pixel that belongs to the OD using image contrast analysis and structure filtering techniques and, on the other hand, a boundary segmentation methodology estimates a circular approximation of the OD boundary by applying mathematical morphology, edge detection techniques and the Circular Hough Transform. The methodologies were tested on a set of 1200 images composed of 229 retinographies from patients affected by DR with risk of ME, 431 with DR and no risk of ME and 540 images of healthy retinas. The location methodology obtained 98.83% success rate, whereas the OD boundary segmentation methodology obtained good circular OD boundary approximation in 94.58% of cases. The average computational time measured over the total set was 1.67 seconds for OD location and 5.78 seconds for OD boundary segmentation.

Keywords: Diabetic retinopathy, macular edema, optic disc, automated detection, automated segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
11 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: Diabetic retinopathy, fundus, CHT, exudates, hemorrhages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
10 Microalbuminuria in Essential Hypertension

Authors: Sharan Badiger, Prema T. Akkasaligar, Sandeep HM, Biradar MS

Abstract:

Essential hypertension (HTN) usually clusters with other cardiovascular risk factors such as age, overweight, diabetes, insulin resistance and dyslipidemia. The target organ damage (TOD) such as left ventricular hypertrophy, microalbuminuria (MA), acute coronary syndrome (ACS), stroke and cognitive dysfunction takes place early in course of hypertension. Though the prevalence of hypertension is high in India, the relationship between microalbuminuria and target organ damage in hypertension is not well studied. This study aim at detecting MA in essential hypertension and its relation to severity of HTN, duration of HTN, body mass index (BMI), age and TOD such as HTN retinopathy and acute coronary syndrome The present study was done in 100 patients of essential hypertension non diabetics admitted to B.L.D.E.University-s Sri B.M.Patil Medical College, Bijapur, from October 2008 to April 2011. The patients underwent detailed history and clinical examination. Early morning 5 ml of urine sample was collected & MA was estimated by immunoturbidometry method. The relationship of MA with the duration & severity of HTN, BMI, age, sex and TOD's like hypertensive retinopathy, ACS was assessed by univariate analysis. The prevalence of MA in this study was found to be 63 %. In that 42% were male & 21% were female. In this study a significant association between MA and the duration of hypertension (p = 0.036) & (OR =0.438). Longer the duration of hypertension, more possibility of microalbumin in urine. Also there was a significant association between severity of hypertension and MA (p=0.045) and (OR=0.093). MA was positive in 50 (79.4%) patients out of 63, whose blood pressure was >160/100 mm Hg. In this study a significant association between MA and the grades of hypertensive retinopathy (p =0.011) and acute coronary syndrome (p = 0.041) (OR =2.805). Gender and BMI did not pose high risk for MA in this study.The prevalence of MA in essential hypertension is high in this part of the community and MA will increase the risk of developing target organ damage.Early screening of patients with essential hypertension for MA and aggressive management of positive cases might reduce the burden of chronic kidney diseases and cardiovascular diseases in the community.

Keywords: Acute coronary syndrome, Essential hypertension, Microalbuminuria, Target organ damage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
9 Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method

Authors: L. S. Godlevsky, N. V. Kresyun, V. P. Martsenyuk, K. S. Shakun, T. V. Tatarchuk, K. O. Prybolovets, L. F. Kalinichenko, M. Karpinski, T. Gancarczyk

Abstract:

Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (P < 0.05). b* index exceeded such one in the control group by 12.4 times (P < 0.05). The integrated index on color difference (ΔE) exceeded control value by 2.87 times (P < 0.05). More pronounced differences with ΔE were followed by a shorter period of MA appearance with a correlation level at -0.56 (P < 0.05). The specificity of diagnostics raised by 2.17 times (P < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (P < 0.05).

Keywords: Diabetic retinopathy, multiscale texture gradient, color spectrum analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576
8 Online Optic Disk Segmentation Using Fractals

Authors: Srinivasan Aruchamy, Partha Bhattacharjee, Goutam Sanyal

Abstract:

Optic disk segmentation plays a key role in the mass screening of individuals with diabetic retinopathy and glaucoma ailments. An efficient hardware-based algorithm for optic disk localization and segmentation would aid for developing an automated retinal image analysis system for real time applications. Herein, TMS320C6416DSK DSP board pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk is reported. The experiment has been performed on color and fluorescent angiography retinal fundus images. Initially, the images were pre-processed to reduce the noise and enhance the quality. The retinal vascular tree of the image was then extracted using canny edge detection technique. Finally, a pixel intensity based fractal analysis is performed to segment the optic disk by tracing the origin of the vascular tree. The proposed method is examined on three publicly available data sets of the retinal image and also with the data set obtained from an eye clinic. The average accuracy achieved is 96.2%. To the best of the knowledge, this is the first work reporting the use of TMS320C6416DSK DSP board and pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk. This will pave the way for developing devices for detection of retinal diseases in the future.

Keywords: Color retinal fundus images, Diabetic retinopathy, Fluorescein angiography retinal fundus images, Fractal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
7 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
6 Computer Modeling of Drug Distribution after Intravitreal Administration

Authors: N. Haghjou, M. J. Abdekhodaie, Y. L. Cheng, M. Saadatmand

Abstract:

Intravitreal injection (IVI) is the most common treatment for eye posterior segment diseases such as endopthalmitis, retinitis, age-related macular degeneration, diabetic retinopathy, uveitis, and retinal detachment. Most of the drugs used to treat vitreoretinal diseases, have a narrow concentration range in which they are effective, and may be toxic at higher concentrations. Therefore, it is critical to know the drug distribution within the eye following intravitreal injection. Having knowledge of drug distribution, ophthalmologists can decide on drug injection frequency while minimizing damage to tissues. The goal of this study was to develop a computer model to predict intraocular concentrations and pharmacokinetics of intravitreally injected drugs. A finite volume model was created to predict distribution of two drugs with different physiochemical properties in the rabbit eye. The model parameters were obtained from literature review. To validate this numeric model, the in vivo data of spatial concentration profile from the lens to the retina were compared with the numeric data. The difference was less than 5% between the numerical and experimental data. This validation provides strong support for the numerical methodology and associated assumptions of the current study.

Keywords: Posterior segment, Intravitreal injection (IVI), Pharmacokinetic, Modelling, Finite volume method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
5 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
4 Basic Research for Electroretinogram Moving the Center of the Multifocal Hexagonal Stimulus Array

Authors: Naoto Suzuki

Abstract:

Many ophthalmologists can examine declines in visual sensitivity at arbitrary points on the retina using a precise perimetry device with a fundus camera function. However, the retinal layer causing the decline in visual sensitivity cannot be identified by this method. We studied an electroretinogram (ERG) function that can move the center of the multifocal hexagonal stimulus array in order to investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy, and multiple evanescent white dot syndrome. An electroretinographic optical system, specifically a perimetric optical system, was added to an experimental device carrying the same optical system as a fundus camera. We also added an infrared camera, a cold mirror, a halogen lamp, and a monitor. The software was generated to show the multifocal hexagonal stimulus array on the monitor using C++Builder XE8 and to move the center of the array up and down as well as back and forth. We used a multifunction I/O device and its design platform LabVIEW for data retrieval. The plate electrodes were used to measure electrodermal activities around the eyes. We used a multifocal hexagonal stimulus array with 37 elements in the software. The center of the multifocal hexagonal stimulus array could be adjusted to the same position as the examination target of the precise perimetry. We successfully added the moving ERG function to the experimental ophthalmologic device.

Keywords: Moving ERG, precise perimetry, retinal layers, visual sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
3 Olive Leaves Extract Restored the antioxidant Perturbations in Red Blood Cells Hemolysate in Streptozotocin Induced Diabetic Rats

Authors: Ismail I. Abo Ghanema, Kadry M. Sadek

Abstract:

Oxidative stress and overwhelming free radicals associated with diabetes mellitus are likely to be linked with development of certain complication such as retinopathy, nephropathy and neuropathy. Treatment of diabetic subjects with antioxidant may be of advantage in attenuating these complications. Olive leaf (Oleaeuropaea), has been endowed with many beneficial and health promoting properties mostly linked to its antioxidant activity. This study aimed to evaluate the significance of supplementation of Olive leaves extract (OLE) in reducing oxidative stress, hyperglycemia and hyperlipidemia in Sterptozotocin (STZ)- induced diabetic rats. After induction of diabetes, a significant rise in plasma glucose, lipid profiles except High density lipoproteincholestrol (HDLc), malondialdehyde (MDA) and significant decrease of plasma insulin, HDLc and Plasma reduced glutathione GSH as well as alteration in enzymatic antioxidants was observed in all diabetic animals. During treatment of diabetic rats with 0.5g/kg body weight of Olive leaves extract (OLE) the levels of plasma (MDA) ,(GSH), insulin, lipid profiles along with blood glucose and erythrocyte enzymatic antioxidant enzymes were significantly restored to establish values that were not different from normal control rats. Untreated diabetic rats on the other hand demonstrated persistent alterations in the oxidative stress marker (MDA), blood glucose, insulin, lipid profiles and the antioxidant parameters. These results demonstrate that OLE may be of advantage in inhibiting hyperglycemia, hyperlipidemia and oxidative stress induced by diabetes and suggest that administration of OLE may be helpful in the prevention or at least reduced of diabetic complications associated with oxidative stress.

Keywords: Diabetes mellitus, olive leaves, oxidative stress, red blood cells

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
2 Development of Moving Multifocal Electroretinogram with a Precise Perimetry Apparatus

Authors: Naoto Suzuki

Abstract:

A decline in visual sensitivity at arbitrary points on the retina can be measured using a precise perimetry apparatus along with a fundus camera. However, the retinal layer associated with this decline cannot be identified accurately with current medical technology. To investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy (AZOOR), and multiple evanescent white dot syndrome (MEWDS), we evaluated an electroretinogram (ERG) function that allows moving the center of the multifocal hexagonal stimulus array to a chosen position. Macular dystrophy is a generalized term used for a variety of functional disorders of the macula lutea, and the ERG shows a diminution of the b-wave in these disorders. AZOOR causes an acute functional disorder to an outer layer of the retina, and the ERG shows a-wave and b-wave amplitude reduction as well as delayed 30 Hz flicker responses. MEWDS causes acute visual loss and the ERG shows a decrease in a-wave amplitude. We combined an electroretinographic optical system and a perimetric optical system into an experimental apparatus that has the same optical system as that of a fundus camera. We also deployed an EO-50231 Edmund infrared camera, a 45-degree cold mirror, a lens with a 25-mm focal length, a halogen lamp, and an 8-inch monitor. Then, we also employed a differential amplifier with gain 10, a 50 Hz notch filter, a high-pass filter with a 21.2 Hz cut-off frequency, and two non-inverting amplifiers with gains 1001 and 11. In addition, we used a USB-6216 National Instruments I/O device, a NE-113A Nihon Kohden plate electrode, a SCB-68A shielded connector block, and LabVIEW 2017 software for data retrieval. The software was used to generate the multifocal hexagonal stimulus array on the computer monitor with C++Builder 10.2 and to move the center of the array toward the left and right and up and down. Cone and bright flash ERG results were observed using the moving ERG function. The a-wave, b-wave, c-wave, and the photopic negative response were identified with cone ERG. The moving ERG function allowed the identification of the retinal layer causing visual alterations.

Keywords: Moving ERG, multifocal ERG, precise perimetry, retinal layers, visual sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
1 Optical Verification of an Ophthalmological Examination Apparatus Employing the Electroretinogram Function on Fundus-Related Perimetry

Authors: Naoto Suzuki

Abstract:

Japanese are affected by the most common causes of eyesight loss such as glaucoma, diabetic retinopathy, pigmentary retinal degeneration, and age-related macular degeneration. We developed an ophthalmological examination apparatus with a fundus camera, precisely fundus-related perimetry (microperimetry), and electroretinogram (ERG) functions to diagnose a variety of diseases that cause eyesight loss. The experimental apparatus was constructed with the same optical system as a fundus camera. The microperimetry optical system was calculated and added to the experimental apparatus using the German company Optenso's optical engineering software (OpTaliX-LT 10.8). We also added an Edmund infrared camera (EO-0413), a lens with a 25 mm focal length, a 45° cold mirror, a 12 V/50 W halogen lamp, and an 8-inch monitor. We made the artificial eye of a plane-convex lens, a black spacer, and a hemispherical cup. The hemispherical cup had a small section of the paper at the bottom. The artificial eye was photographed five times using the experimental apparatus. The software was created to display the examination target on the monitor and save examination data using C++Builder 10.2. The retinal fundus was displayed on the monitor at a length and width of 1 mm and a resolution of 70.4 ± 4.1 and 74.7 ± 6.8 pixels, respectively. The microperimetry and ERG functions were successfully added to the experimental ophthalmological apparatus. A moving machine was developed to measure the artificial eye's movement. The artificial eye's rear part was painted black and white in the central area. It was rotated 10 degrees from one side to the other. The movement was captured five times as motion videos. Three static images were extracted from one of the motion videos captured. The images display the artificial eye facing the center, right, and left directions. The three images were processed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2, including trimming, binarization, making a window, deleting peripheral area, and morphological operations. To calculate the artificial eye's fundus center, we added a gravity method to the program to calculate the gravity position of connected components. From the three images, the image processing could calculate the center position.

Keywords: Ophthalmological examination apparatus, microperimetry, electroretinogram, eye movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 569