Search results for: Integral images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1565

Search results for: Integral images

1355 Contour Estimation in Synthetic and Real Weld Defect Images based on Maximum Likelihood

Authors: M. Tridi, N. Nacereddine, N. Oucief

Abstract:

This paper describes a novel method for automatic estimation of the contours of weld defect in radiography images. Generally, the contour detection is the first operation which we apply in the visual recognition system. Our approach can be described as a region based maximum likelihood formulation of parametric deformable contours. This formulation provides robustness against the poor image quality, and allows simultaneous estimation of the contour parameters together with other parameters of the model. Implementation is performed by a deterministic iterative algorithm with minimal user intervention. Results testify for the very good performance of the approach especially in synthetic weld defect images.

Keywords: Contour, gaussian, likelihood, rayleigh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1354 Efficient Copy-Move Forgery Detection for Digital Images

Authors: Somayeh Sadeghi, Hamid A. Jalab, Sajjad Dadkhah

Abstract:

Due to availability of powerful image processing software and improvement of human computer knowledge, it becomes easy to tamper images. Manipulation of digital images in different fields like court of law and medical imaging create a serious problem nowadays. Copy-move forgery is one of the most common types of forgery which copies some part of the image and pastes it to another part of the same image to cover an important scene. In this paper, a copy-move forgery detection method proposed based on Fourier transform to detect forgeries. Firstly, image is divided to same size blocks and Fourier transform is performed on each block. Similarity in the Fourier transform between different blocks provides an indication of the copy-move operation. The experimental results prove that the proposed method works on reasonable time and works well for gray scale and colour images. Computational complexity reduced by using Fourier transform in this method.

Keywords: Copy-Move forgery, Digital Forensics, Image Forgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
1353 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
1352 The Design of PIP Controller for a Thermal System with Large Time Delay

Authors: Seiyed Hamid Zareh, Atabak Sarrafan, Kambiz Ghaemi Osgouie

Abstract:

This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller-s parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a chamber constant.

Keywords: Proportional-integral-predictive controller, Transferfunction, Delay time, Transport-lag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
1351 Frictionless Contact Problem Between Two Orthotropic Elastic Layers

Authors: V. Kahya, A. Birinci, R. Erdol

Abstract:

A frictionless contact problem for a two-layer orthotropic elastic medium loaded through a rigid flat stamp is considered. It is assumed that tensile tractions are not allowed and only compressive tractions can be transmitted across the interface. In the solution, effect of gravity is taken into consideration. If the external load on the rigid stamp is less than or equal to a critical value, continuous contact between the layers is maintained. The problem is expressed in terms of a singular integral equation by using the theory of elasticity and the Fourier transforms. Numerical results for initial separation point, critical separation load and contact stress distribution are presented.

Keywords: Frictionless contact, Initial separation, Orthotropicmaterial, Singular integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
1350 Artificial Visual Percepts for Image Understanding

Authors: Jeewanee Bamunusinghe, Damminda Alahakoon

Abstract:

Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.

Keywords: Image understanding, percept, visual perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1349 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: Doubly linked list, parallel 2-opt, tour division, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
1348 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms

Authors: Ching-Fen Jiang

Abstract:

Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.

Keywords: edge detection, ultrasonic images, speckle noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1347 One-Class Support Vector Machines for Aerial Images Segmentation

Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen

Abstract:

Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.

Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1346 Design of Controllers to Control Frequency for Distributed Generation

Authors: R. Satish, G. Raja Rao

Abstract:

In this paper a hybrid distributed generation (DG) system connected to isolated load is studied. The DG system consisting of photo voltaic (PV) system, fuel cells, aqua electrolyzer, diesel engine generator and a battery energy storage system. The ambient temperature value of PV is taken as constant to make the output power of PV is directly proportional to the radiation and output power of other DG sources and frequency of the system is controlled by simple integral (I), proportional plus integral (PI), and proportional plus integral and derivative(PID) controllers. A maiden attempt is made to apply a more recent and powerful optimization technique named as bacterial foraging technique for optimization of controllers gains of the proposed hybrid DG system. The system responses with bacterial foraging based controllers are compared with that of classical method. Investigations reveal that bacterial foraging based controllers gives better responses than the classical method and also PID controller is best. Sensitivity analysis is carried out which demonstrates the robustness of the optimized gain values for system loading condition.

Keywords: Aqua electrolyzer, bacterial foraging, battery energy storage system, diesel engine generator, distributed generation, fuel cells, photo voltaic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1345 Adaptive Integral Backstepping Motion Control for Inverted Pendulum

Authors: Ö. Tolga Altınöz

Abstract:

The adaptive backstepping controller for inverted pendulum is designed by using the general motion control model. Backstepping is a novel nonlinear control technique based on the Lyapunov design approach, used when higher derivatives of parameter estimation appear. For easy parameter adaptation, the mathematical model of the inverted pendulum converted into the motion control model. This conversion is performed by taking functions of unknown parameters and dynamics of the system. By using motion control model equations, inverted pendulum is simulated without any information about not only parameters but also measurable dynamics. Also these results are compare with the adaptive backstepping controller which extended with integral action that given from [1].

Keywords: Adaptive backstepping, inverted pendulum, nonlinear adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3490
1344 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo

Authors: Miika Toivanen, Jouko Lampinen

Abstract:

This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.

Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1343 Multiple Regression based Graphical Modeling for Images

Authors: Pavan S., Sridhar G., Sridhar V.

Abstract:

Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.

Keywords: Belief propagation, Graphical model, Regression, Super resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
1342 Controlling the Angle of Attack of an Aircraft Using Genetic Algorithm Based Flight Controller

Authors: S. Swain, P. S Khuntia

Abstract:

In this paper, the unstable angle of attack of a FOXTROT aircraft is controlled by using Genetic Algorithm based flight controller and the result is compared with the conventional techniques like Tyreus-Luyben (TL), Ziegler-Nichols (ZN) and Interpolation Rule (IR) for tuning the PID controller. In addition, the performance indices like Mean Square Error (MSE), Integral Square Error (ISE), and Integral Absolute Time Error (IATE) etc. are improved by using Genetic Algorithm. It was established that the error by using GA is very less as compared to the conventional techniques thereby improving the performance indices of the dynamic system.

Keywords: Angle of Attack, Genetic Algorithm, Performance Indices, PID Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1341 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1340 An Improved Method to Watermark Images Sensitive to Blocking Artifacts

Authors: Afzel Noore

Abstract:

A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.

Keywords: Digital watermarking, data hiding, modified discretecosine transformation (MDCT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1339 A Study of the Variability of Very Low Resolution Characters and the Feasibility of Their Discrimination Using Geometrical Features

Authors: Farshideh Einsele, Rolf Ingold

Abstract:

Current OCR technology does not allow to accurately recognizing small text images, such as those found in web images. Our goal is to investigate new approaches to recognize very low resolution text images containing antialiased character shapes. This paper presents a preliminary study on the variability of such characters and the feasibility to discriminate them by using geometrical features. In a first stage we analyze the distribution of these features. In a second stage we present a study on the discriminative power for recognizing isolated characters, using various rendering methods and font properties. Finally we present interesting results of our evaluation tests leading to our conclusion and future focus.

Keywords: World Wide Web, document analysis, pattern recognition, Optical Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
1338 Ruin Probability for a Markovian Risk Model with Two-type Claims

Authors: Dongdong Zhang, Deran Zhang

Abstract:

In this paper, a Markovian risk model with two-type claims is considered. In such a risk model, the occurrences of the two type claims are described by two point processes {Ni(t), t ¸ 0}, i = 1, 2, where {Ni(t), t ¸ 0} is the number of jumps during the interval (0, t] for the Markov jump process {Xi(t), t ¸ 0} . The ruin probability ª(u) of a company facing such a risk model is mainly discussed. An integral equation satisfied by the ruin probability ª(u) is obtained and the bounds for the convergence rate of the ruin probability ª(u) are given by using key-renewal theorem.

Keywords: Risk model, ruin probability, Markov jump process, integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
1337 Implementation of RC5 Block Cipher Algorithm for Image Cryptosystems

Authors: Hossam El-din H. Ahmed, Hamdy M. Kalash, Osama S. Farag Allah

Abstract:

This paper examines the implementation of RC5 block cipher for digital images along with its detailed security analysis. A complete specification for the method of application of the RC5 block cipher to digital images is given. The security analysis of RC5 block cipher for digital images against entropy attack, bruteforce, statistical, and differential attacks is explored from strict cryptographic viewpoint. Experiments and results verify and prove that RC5 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC5 block cipher algorithm.

Keywords: Image encryption, security analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3674
1336 Image Similarity: A Genetic Algorithm Based Approach

Authors: R. C. Joshi, Shashikala Tapaswi

Abstract:

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
1335 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: Positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
1334 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: Diabetic retinopathy, fundus, CHT, exudates, hemorrhages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
1333 Segmentation of Ascending and Descending Aorta in CTA Images

Authors: H. Özkan

Abstract:

In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.

Keywords: Ascending aorta (AscA), Descending aorta (DesA), Computed tomography angiography (CTA), Computer aided detection (CAD), Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1332 Generalization Kernel for Geopotential Approximation by Harmonic Splines

Authors: Elena Kotevska

Abstract:

This paper presents a generalization kernel for gravitational potential determination by harmonic splines. It was shown in [10] that the gravitational potential can be approximated using a kernel represented as a Newton integral over the real Earth body. On the other side, the theory of geopotential approximation by harmonic splines uses spherically oriented kernels. The purpose of this paper is to show that in the spherical case both kernels have the same type of representation, which leads us to conclusion that it is possible to consider the kernel represented as a Newton integral over the real Earth body as a kind of generalization of spherically harmonic kernels to real geometries.

Keywords: Geopotential, Reproducing Kernel, Approximation, Regular Surface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
1331 One scheme of Transition Probability Evaluation

Authors: Alexander B. Bichkov, Alla A. Mityureva, Valery V. Smirnov

Abstract:

In present work are considered the scheme of evaluation the transition probability in quantum system. It is based on path integral representation of transition probability amplitude and its evaluation by means of a saddle point method, applied to the part of integration variables. The whole integration process is reduced to initial value problem solutions of Hamilton equations with a random initial phase point. The scheme is related to the semiclassical initial value representation approaches using great number of trajectories. In contrast to them from total set of generated phase paths only one path for each initial coordinate value is selected in Monte Karlo process.

Keywords: Path integral, saddle point method, semiclassical approximation, transition probability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
1330 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340
1329 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1328 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

Authors: Arnaud Nougues

Abstract:

This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
1327 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation

Authors: Z. El Felsoufi, L. Azrar

Abstract:

This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.

Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1326 The Auto-Tuning PID Controller for Interacting Water Level Process

Authors: Satean Tunyasrirut, Tianchai Suksri, Arjin Numsomran, Supan Gulpanich, Kitti Tirasesth

Abstract:

This paper presents the approach to design the Auto- Tuning PID controller for interactive Water Level Process using integral step response. The Integral Step Response (ISR) is the method to model a dynamic process which can be done easily, conveniently and very efficiently. Therefore this method is advantage for design the auto tune PID controller. Our scheme uses the root locus technique to design PID controller. In this paper MATLAB is used for modeling and testing of the control system. The experimental results of the interacting water level process can be satisfyingly illustrated the transient response and the steady state response.

Keywords: Coupled-Tank, Interacting water level process, PIDController, Auto-tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304