**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31100

##### One scheme of Transition Probability Evaluation

**Authors:**
Alexander B. Bichkov,
Alla A. Mityureva,
Valery V. Smirnov

**Abstract:**

**Keywords:**
transition probability,
path integral,
saddle point method,
semiclassical approximation

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1062620

**References:**

[1] J. R. Klauder. Path integrals and stationary-phase approximations. Phys. Rev. D 19, p. 2349-2356 (1979).

[2] V. V. Smirnov. On the estimation of a path integral by means of the saddle point method. J. Phys. A: Math. and Theor., 2010, v. 43, 465303 (11pp)

[3] M. Baranger, M. A. M. de Aguiar, F. Keck, H. J. Korsch and B. Schellhaas. Semiclassical approximations in phase space with coherent states. J. Phys. A: Math. Gen., 2001, v. 34, p. 7227-7286

[4] J. H. Samson. Phase-space path-integral calculation of the Wigner function. J. Phys. A: Math. Gen., 2003, v. 36, p. 10637-10650

[5] Jeremy Schiff, Yair Goldfarb and David J. Tannor. Path integral derivations of novel complex trajectory methods. arXiv:0807.4659v2

[quant-ph] 30 Jul 2008

[6] M. S. Marinov. Path integrals on homogeneous manifolds. J. Math. Phys., 1995, v. 36, n. 5, p. 2458-2469

[7] Carol Braun and Anupam Garg. Semiclassical coherent-state propagator for many particles. J. Math. Phys., 2007, v. 48, 032104

[8] Carol Braun and Anupam Garg. Semiclassical coherent-state propagator for many spins. J. Math. Phys., 2007, v. 48, 102104

[9] V. N. Kolokoltsov. Complex calculus of variations, infinite-dimensional saddle-point method and Feynman integral for dissipative stochastic Schroedinger equation. Preprint, Nottingham Trent University, 1999.

[10] Hagen Kleinert. Path integrals in quantum mechanics, statistics, polymer physics, and financial markets. (World Scientific Publishing Co. 5th Edition, 2010)

[11] M. F. Herman and E. Kluk. A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys.1984, v. 91, p. 27-34

[12] M. F. Herman. Dynamics by semiclassical methods Annu. Rev. Phys. Chem. 1994, v. 45, p. 83-111

[13] Sarin A Deshpande and Gregory S Ezra. On the derivation of the Herman-Kluk propagator. J. Phys. A: Math. Gen. 39 (2006) 5067-5078

[14] Eric J. Heller. Cellular dynamics: A new semiclassical approach to timedependent quantum mechanics. J. Chem. Phys. 94 (4), 1991, p. 2723- 2729

[15] Kenneth G. Kay. Integral expressions for the semiclassical timedependent propagator. J. Chem. Phys. 100 (6), 1994, p. 4377-4392

[16] Frank Grossmann and Michael F. Herman. Comment on ÔÇÿSemiclassical approximations in phase space with coherent states-. J. Phys. A: Math. Gen. 35 (2002) 9489-9492

[17] C. Harabatia and J. M. Rost, F. Grossmann. Long-time and unitary properties of semiclassical initial value representations. Journal of Chemical Physics, 2004, v. 120, n. 1 p. 26-30

[18] A. M. Perelomov. Generalized coherent states and their applications. (Springer-Verlag, 1986)

[19] F. A. Berezin. Secondary quantization method. (Moscow, Nauka, 1986)

[20] J. R. Klauder and B. S. Skagerstam. Coherent States: Applications in Physics and Mathematical Physics. (Singapore: World Scientific, 1985)

[21] V. V. Smirnov. A note on the limiting procedures for path integrals. J. Phys. A: Math. and Theor., 2008, v. 41, 035306

[22] L. C. dos Santos and M. A. M. de Aguiar. Coherent state path integrals in the Weyl representation. J. Phys. A: Math. Gen. 39 (2006) 13465- 13482

[23] J. R. Klauder. Path integrals and stationary-phase approximations. Phys. Rev. D 19, p. 2349-2356 (1979).

[24] V. V. Smirnov. Path integral for system with spin. J. Phys. A : Math. and Gen., 1999, v.32, n.7, p.1285-1290

[25] V. V. Smirnov and A. A. Mityureva. The new approach to the computer experimental studies of atoms excitation by electron impact. Helium. J. Phys. B. : Atomic and Mol. Phys., 1996, v.29, n.13, p.2865-2874

[26] A. B. Bichkov, A. A. Mityureva and V. V. Smirnov. Path-integral-based evaluation of the probability of hydrogen atom ionization by short photo-pulse. J. Phys. B: At. Mol. Opt. Phys., 2011, v. 44, 135601 (6pp)

[27] M. A. Evgrafov. Asymptotic estimates and entire functions. (New York, Gordon & Breach, 1962)