One scheme of Transition Probability Evaluation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
One scheme of Transition Probability Evaluation

Authors: Alexander B. Bichkov, Alla A. Mityureva, Valery V. Smirnov

Abstract:

In present work are considered the scheme of evaluation the transition probability in quantum system. It is based on path integral representation of transition probability amplitude and its evaluation by means of a saddle point method, applied to the part of integration variables. The whole integration process is reduced to initial value problem solutions of Hamilton equations with a random initial phase point. The scheme is related to the semiclassical initial value representation approaches using great number of trajectories. In contrast to them from total set of generated phase paths only one path for each initial coordinate value is selected in Monte Karlo process.

Keywords: Path integral, saddle point method, semiclassical approximation, transition probability

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062620

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605

References:


[1] J. R. Klauder. Path integrals and stationary-phase approximations. Phys. Rev. D 19, p. 2349-2356 (1979).
[2] V. V. Smirnov. On the estimation of a path integral by means of the saddle point method. J. Phys. A: Math. and Theor., 2010, v. 43, 465303 (11pp)
[3] M. Baranger, M. A. M. de Aguiar, F. Keck, H. J. Korsch and B. Schellhaas. Semiclassical approximations in phase space with coherent states. J. Phys. A: Math. Gen., 2001, v. 34, p. 7227-7286
[4] J. H. Samson. Phase-space path-integral calculation of the Wigner function. J. Phys. A: Math. Gen., 2003, v. 36, p. 10637-10650
[5] Jeremy Schiff, Yair Goldfarb and David J. Tannor. Path integral derivations of novel complex trajectory methods. arXiv:0807.4659v2
[quant-ph] 30 Jul 2008
[6] M. S. Marinov. Path integrals on homogeneous manifolds. J. Math. Phys., 1995, v. 36, n. 5, p. 2458-2469
[7] Carol Braun and Anupam Garg. Semiclassical coherent-state propagator for many particles. J. Math. Phys., 2007, v. 48, 032104
[8] Carol Braun and Anupam Garg. Semiclassical coherent-state propagator for many spins. J. Math. Phys., 2007, v. 48, 102104
[9] V. N. Kolokoltsov. Complex calculus of variations, infinite-dimensional saddle-point method and Feynman integral for dissipative stochastic Schroedinger equation. Preprint, Nottingham Trent University, 1999.
[10] Hagen Kleinert. Path integrals in quantum mechanics, statistics, polymer physics, and financial markets. (World Scientific Publishing Co. 5th Edition, 2010)
[11] M. F. Herman and E. Kluk. A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys.1984, v. 91, p. 27-34
[12] M. F. Herman. Dynamics by semiclassical methods Annu. Rev. Phys. Chem. 1994, v. 45, p. 83-111
[13] Sarin A Deshpande and Gregory S Ezra. On the derivation of the Herman-Kluk propagator. J. Phys. A: Math. Gen. 39 (2006) 5067-5078
[14] Eric J. Heller. Cellular dynamics: A new semiclassical approach to timedependent quantum mechanics. J. Chem. Phys. 94 (4), 1991, p. 2723- 2729
[15] Kenneth G. Kay. Integral expressions for the semiclassical timedependent propagator. J. Chem. Phys. 100 (6), 1994, p. 4377-4392
[16] Frank Grossmann and Michael F. Herman. Comment on ÔÇÿSemiclassical approximations in phase space with coherent states-. J. Phys. A: Math. Gen. 35 (2002) 9489-9492
[17] C. Harabatia and J. M. Rost, F. Grossmann. Long-time and unitary properties of semiclassical initial value representations. Journal of Chemical Physics, 2004, v. 120, n. 1 p. 26-30
[18] A. M. Perelomov. Generalized coherent states and their applications. (Springer-Verlag, 1986)
[19] F. A. Berezin. Secondary quantization method. (Moscow, Nauka, 1986)
[20] J. R. Klauder and B. S. Skagerstam. Coherent States: Applications in Physics and Mathematical Physics. (Singapore: World Scientific, 1985)
[21] V. V. Smirnov. A note on the limiting procedures for path integrals. J. Phys. A: Math. and Theor., 2008, v. 41, 035306
[22] L. C. dos Santos and M. A. M. de Aguiar. Coherent state path integrals in the Weyl representation. J. Phys. A: Math. Gen. 39 (2006) 13465- 13482
[23] J. R. Klauder. Path integrals and stationary-phase approximations. Phys. Rev. D 19, p. 2349-2356 (1979).
[24] V. V. Smirnov. Path integral for system with spin. J. Phys. A : Math. and Gen., 1999, v.32, n.7, p.1285-1290
[25] V. V. Smirnov and A. A. Mityureva. The new approach to the computer experimental studies of atoms excitation by electron impact. Helium. J. Phys. B. : Atomic and Mol. Phys., 1996, v.29, n.13, p.2865-2874
[26] A. B. Bichkov, A. A. Mityureva and V. V. Smirnov. Path-integral-based evaluation of the probability of hydrogen atom ionization by short photo-pulse. J. Phys. B: At. Mol. Opt. Phys., 2011, v. 44, 135601 (6pp)
[27] M. A. Evgrafov. Asymptotic estimates and entire functions. (New York, Gordon & Breach, 1962)