Search results for: engineering parameters
2394 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints
Authors: Mohammad Reza Ghasemi, Amin Ghorbani
Abstract:
The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17412393 Medical Image Edge Detection Based on Neuro-Fuzzy Approach
Authors: J. Mehena, M. C. Adhikary
Abstract:
Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12832392 Analysis of Contact Width and Contact Stress of Three-Layer Corrugated Metal Gasket
Authors: I. Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi, Oke Oktavianty, Didik Nurhadiyanto
Abstract:
Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend.
Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13402391 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting
Authors: P. Subbaraj, V. Rajasekaran
Abstract:
This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.
Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16802390 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8732389 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation
Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati
Abstract:
In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.Keywords: Carbon nanotubes, vibration control, piezoelectric layers, elastic foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12552388 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition
Authors: Habtu Alemayehu, G. Radhakrishnamacharya
Abstract:
The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.Keywords: Dispersion, Peristalsis, Couple stress fluid, Porousmedium, Chemical reaction, Slip condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15612387 The Rank-scaled Mutation Rate for Genetic Algorithms
Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac
Abstract:
A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.
Keywords: Genetic algorithms, mutation rate control, adaptive mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26692386 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations
Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams
Abstract:
A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.
Keywords: Stewart platform, docking operation, spacecraft, spring constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672385 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting
Authors: Yeqing Guan, Fen Yang
Abstract:
To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.
Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15562384 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure
Authors: A. Benmakhlouf, A. Bentabet
Abstract:
In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.Keywords: Pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21162383 An Empirical Model of Correlated Traffics in LTE-Advanced System through an Innovative Simulation Tool
Authors: Ghassan A. Abed, Mahamod Ismail, Samir I. Badrawi, Bayan M. Sabbar
Abstract:
Long Term Evolution Advanced (LTE-Advanced) LTE-Advanced is not new as a radio access technology, but it is an evolution of LTE to enhance the performance. This generation is the continuation of 3GPP-LTE (3GPP: 3rd Generation Partnership Project) and it is targeted for advanced development of the requirements of LTE in terms of throughput and coverage. The performance evaluation process of any network should be based on many models and simulations to investigate the network layers and functions and monitor the employment of the new technologies especially when this network includes large-bandwidth and low-latency links such as LTE and LTE-Advanced networks. Therefore, it’s necessary to enhance the proposed models of high-speed and high-congested link networks to make these links and traffics fulfill the needs of the huge data which transferred over the congested links. This article offered an innovative model of the most correlated links of LTE-Advanced system using the Network Simulator 2 (NS-2) with investigation of the link parameters.
Keywords: 3GPP, LTE, LTE-Advanced, NS-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24272382 Evaluation of the Laser and Partial Vibration Stimulation on Osteoporosis
Authors: Ji Hyung Park, Dong-Hyun Seo, Young-Jin Jung, Han Sung Kim
Abstract:
The aim of this study is to evaluate the effects of the laser and partial vibration stimulation on the mice tibia with morphological characteristics. Twenty female C57BL/6 mice (12 weeks old) were used for the experiment. The study was carried out on four groups of animals each consisting of five mice. Four groups of mice were ovariectomized. Animals were scanned at 0 and 2 weeks after ovariectomy by using micro computed tomography to estimate morphological characteristics of tibial trabecular bone. Morphological analysis showed that structural parameters of multi-stimuli group appear significantly better phase in BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp, and Tb.pf than single stimulation groups. However, single stimulation groups didn’t show significant effect on tibia with Sham group. This study suggests that multi-stimuli may restrain the change as the degenerate phase on osteoporosis in the mice tibia.
Keywords: Laser, Partial Vibration, Osteoporosis, in vivo micro-CT, mice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19632381 A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System
Authors: M. Debyeche, J.P Haton, A. Houacine
Abstract:
The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.
Keywords: Hidden Markov Model, Vector Quantization, Neural Network, Speech Recognition, Arabic Language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20562380 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8682379 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications
Authors: C. Elavarasi, T. Shanmuganantham
Abstract:
A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.Keywords: Monopole antenna, fractal, metamaterial, waterlily shape, split ring resonator, multiband.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12632378 Small Wind Turbine Hybrid System for Remote Application: Egyptian Case Study
Authors: M. A. Badr, A. N. Mohib, M. M. Ibrahim
Abstract:
The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) system supplying a remote small gathering of six families using HOMER software package. The electrical energy is to cater for the basic needs for which the daily load pattern is estimated. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for two sites. Using HOMER software, the simulation results showed that W/D/B systems are economical for the assumed community sites as the price of generated electricity is about 0.308 $/kWh, without taking external benefits into considerations. W/D/B systems are more economical than W/B or diesel alone systems, as the COE is 0.86 $/kWh for W/B and 0.357 $/kWh for diesel alone.
Keywords: Optimum energy systems, Remote electrification, Renewable energy, Wind turbine systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25572377 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
This study aimed to evaluated the surface water quality for agriculture and consumption in the Amphawa District. The surface water quality parameters in this study included water temperature, turbidity, conductivity, salinity, pH, dissolved oxygen, BOD, nitrate, suspended solids, phosphorus, total dissolved solids (TDS), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), lead (Pb) and cadmium (Cd). The water samples were collected from small excavation, Lychee, Pomelo and Coconut orchards for 3 seasons from January to December 2011.
The surface water quality from small excavation, Lychee, pomelo and coconut orchards were met the type III of surface water quality standard. The concentration of heavy metal and did not differ significantly at 0.05 level, except dissolved oxygen.
The surface water was suitable for consumption by the usual sterile and generally improving water quality through the process before and was suitable for agriculture.
Keywords: Water Quality, Surface Water Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20582376 A Study of Liver Checkup in Patients with Hepatitis C in the Region of Batna
Authors: A. Zidani, M. Yahia K. Belhadi, S. Benbia
Abstract:
Hepatitis C is an infectious disease transmitted by blood and due to hepatitis C virus (HCV), which attacks the liver. The infection is characterized by liver inflammation (hepatitis) that is often asymptomatic but can progress to chronic hepatitis and later cirrhosis and liver cancer. Our problem tends to highlight on the one hand the prevalence of infectious disease in the population of the region of Batna and on other hand the biological characteristics of this disease by a screening and a specific diagnosis based on serological tests, liver checkup (measurement of haematological and biochemical parameters). The results showed: The serology of hepatitis C establishes the diagnosis of infection with hepatitis C. In this study and with the serological test, 24 cases of the disease of hepatitis C were found in 1000 suspected cases (7 cases with normal transaminases and 17 cases with elevated transaminases). The prevalence of this disease in this study population was 2.4%. The presence of hepatitis C disrupts liver function including the onset of cytolysis, cholestasis, jaundice, thrombocytopenia, and coagulation disorders.Keywords: Disease hepatitis C, serology, liver checkup
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16532375 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.
Keywords: Finite element model, rotordynamic system, model reduction, substructuring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40732374 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Alternative Approach
Authors: Mário C. Ricci
Abstract:
An alternative iterative computational procedure is proposed for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. An accurate method for curvature radii at contacts with inner and outer raceways in the direction of the motion is used. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14722373 Piezoelectric Transducer Modeling: with System Identification (SI) Method
Authors: Nora Taghavi, Ali Sadr
Abstract:
System identification is the process of creating models of dynamic process from input- output signals. The aim of system identification can be identified as “ to find a model with adjustable parameters and then to adjust them so that the predicted output matches the measured output". This paper presents a method of modeling and simulating with system identification to achieve the maximum fitness for transformation function. First by using optimized KLM equivalent circuit for PVDF piezoelectric transducer and assuming different inputs including: sinuside, step and sum of sinusides, get the outputs, then by using system identification toolbox in MATLAB, we estimate the transformation function from inputs and outputs resulted in last program. Then compare the fitness of transformation function resulted from using ARX,OE(Output- Error) and BJ(Box-Jenkins) models in system identification toolbox and primary transformation function form KLM equivalent circuit.Keywords: PVDF modeling, ARX, BJ(Box-Jenkins), OE(Output-Error), System Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27472372 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042371 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation
Authors: L. Grinis, V. Haslavsky
Abstract:
Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.
Keywords: Drilling, stuck-pipe, vibration, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26032370 Investigation of Drying Kinetics of Viscose Yarn Bobbins
Authors: Ugur Akyol, Dinçer Akal, Ahmet Cihan, Kamil Kahveci
Abstract:
This study is concerned with the investigation of the suitability of several empirical and semi-empirical drying models available in the literature to define drying behavior of viscose yarn bobbins. For this purpose, firstly, experimental drying behaviour of viscose bobbins was determined on an experimental dryer setup which was designed and manufactured based on hot-air bobbin dryers used in textile industry. Afterwards, drying models considered were fitted to the experimentally obtained moisture ratios. Drying parameters were drying temperature and bobbin diameter. The fit was performed by selecting the values for constants in the models in such a way that these values make the sum of the squared differences between the experimental and the model results for moisture ratio minimum. Suitability of fitting was specified as comparing the correlation coefficient, standard error and mean square deviation. The results show that the most appropriate model in describing the drying curves of viscose bobbins is the Page model.Keywords: Drying, moisture ratio, Page model, viscose
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17512369 Hydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method
Authors: Neslihan Yuca, Nilgün Karatepe
Abstract:
The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. Purification process of SWCNTs was fulfilled by microwave digestion at three different temperatures (120, 150 and 200 °C), three different acid concentrations (0.5, 1 and 1.5 M) and for three different time intervals (15, 30 and 60 min). Nitric acid (HNO3) was used in the removal of the metal catalysts. The hydrogen storage capacities of the purified materials were measured using volumetric method at the liquid nitrogen temperature and gas pressure up to 100 bar. The effects of the purification conditions such as temperature, time and acid concentration on hydrogen adsorption were investigated.Keywords: Carbon nanotubes, purification, microwavedigestion, hydrogen storage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22462368 A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity
Authors: S. Raja Balachandar, K.Kannan
Abstract:
A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.
Keywords: Vertex covering Problem, Velocity, Gravitational Force, Newton's Law, Meta Heuristic, Combinatorial optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20122367 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher
Abstract:
Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.
Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5392366 HIV Treatment Planning on a case-by-CASE Basis
Authors: Marios M. Hadjiandreou, Raul Conejeros, Ian Wilson
Abstract:
This study presents a mathematical modeling approach to the planning of HIV therapies on an individual basis. The model replicates clinical data from typical-progressors to AIDS for all stages of the disease with good agreement. Clinical data from rapid-progressors and long-term non-progressors is also matched by estimation of immune system parameters only. The ability of the model to reproduce these phenomena validates the formulation, a fact which is exploited in the investigation of effective therapies. The therapy investigation suggests that, unlike continuous therapy, structured treatment interruptions (STIs) are able to control the increase in both the drug-sensitive and drug-resistant virus population and, hence, prevent the ultimate progression from HIV to AIDS. The optimization results further suggest that even patients characterised by the same progression type can respond very differently to the same treatment and that the latter should be designed on a case-by-case basis. Such a methodology is presented here.
Keywords: AIDS, chemotherapy, mathematical modeling, optimal control, progression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852365 An Indispensable Parameter in Lipid Ratios to Discriminate between Morbid Obesity and Metabolic Syndrome in Children: High Density Lipoprotein Cholesterol
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity is a low-grade inflammatory disease and may lead to health problems such as hypertension, dyslipidemia, diabetes. It is also associated with important risk factors for cardiovascular diseases. This requires the detailed evaluation of obesity, particularly in children. The aim of this study is to enlighten the potential associations between lipid ratios and obesity indices and to introduce those with discriminating features among children with obesity and metabolic syndrome (MetS). A total of 408 children (aged between six and eighteen years) participated in the scope of the study. Informed consent forms were taken from the participants and their parents. Ethical Committee approval was obtained. Anthropometric measurements such as weight, height as well as waist, hip, head, neck circumferences and body fat mass were taken. Systolic and diastolic blood pressure values were recorded. Body mass index (BMI), diagnostic obesity notation model assessment index-II (D2 index), waist-to-hip, head-to-neck ratios were calculated. Total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDLChol), low-density lipoprotein cholesterol (LDLChol) analyses were performed in blood samples drawn from 110 children with normal body weight, 164 morbid obese (MO) children and 134 children with MetS. Age- and sex-adjusted BMI percentiles tabulated by World Health Organization were used to classify groups; normal body weight, MO and MetS. 15th-to-85th percentiles were used to define normal body weight children. Children, whose values were above the 99th percentile, were described as MO. MetS criteria were defined. Data were evaluated statistically by SPSS Version 20. The degree of statistical significance was accepted as p≤0.05. Mean±standard deviation values of BMI for normal body weight children, MO children and those with MetS were 15.7±1.1, 27.1±3.8 and 29.1±5.3 kg/m2, respectively. Corresponding values for the D2 index were calculated as 3.4±0.9, 14.3±4.9 and 16.4±6.7. Both BMI and D2 index were capable of discriminating the groups from one another (p≤0.01). As far as other obesity indices were considered, waist-to hip and head-to-neck ratios did not exhibit any statistically significant difference between MO and MetS groups (p≥0.05). Diagnostic obesity notation model assessment index-II was correlated with the triglycerides-to-HDL-C ratio in normal body weight and MO (r=0.413, p≤0.01 and r=0.261, (p≤0.05, respectively). Total cholesterol-to-HDL-C and LDL-C-to-HDL-C showed statistically significant differences between normal body weight and MO as well as MO and MetS (p≤0.05). The only group in which these two ratios were significantly correlated with waist-to-hip ratio was MetS group (r=0.332 and r=0.334, p≤0.01, respectively). Lack of correlation between the D2 index and the triglycerides-to-HDL-C ratio was another important finding in MetS group. In this study, parameters and ratios, whose associations were defined previously with increased cardiovascular risk or cardiac death have been evaluated along with obesity indices in children with morbid obesity and MetS. Their profiles during childhood have been investigated. Aside from the nature of the correlation between the D2 index and triglycerides-to-HDL-C ratio, total cholesterol-to-HDL-C as well as LDL-C-to- HDL-C ratios along with their correlations with waist-to-hip ratio showed that the combination of obesity-related parameters predicts better than one parameter and appears to be helpful for discriminating MO children from MetS group.
Keywords: Children, lipid ratios, metabolic syndrome, obesity indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837