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Abstract—This study presents a mathematical modeling approach
to the planning of HIV therapies on an individual basis. The model
replicates clinical data from typical-progressors to AIDS for all
stages of the disease with good agreement. Clinical data from
rapid-progressors and long-term non-progressors is also matched by
estimation of immune system parameters only. The ability of the
model to reproduce these phenomena validates the formulation, a
fact which is exploited in the investigation of effective therapies.
The therapy investigation suggests that, unlike continuous therapy,
structured treatment interruptions (STIs) are able to control the
increase in both the drug-sensitive and drug-resistant virus population
and, hence, prevent the ultimate progression from HIV to AIDS. The
optimization results further suggest that even patients characterised by
the same progression type can respond very differently to the same
treatment and that the latter should be designed on a case-by-case
basis. Such a methodology is presented here.

Keywords—AIDS, chemotherapy, mathematical modeling, optimal
control, progression.

I. INTRODUCTION

DESPITE the impressive amount of work in HIV research
there are as yet no effective treatment strategies that

prevent the ultimate progression from HIV to AIDS and death.
Mathematical modeling can synthesize existing knowledge
and provide a theoretical framework for the interpretation of
existing paradigms. Furthermore, mathematical models can
serve as a powerful tool in the quest for computing optimal
treatment strategies due to their ability to estimate the patient’s
response to therapy [1].

It is important to validate any modelling attempt by using
data from clinical trials or experimental studies. This has not
been considered in most modeling work reported to date ([2]-
[4]) yet is obviously essential in order to ensure that the
model predictions replicate real phenomena. In addition, many
studies did not consider the drug-resistant virus population
([2], [5]). The emergence of such a strain is known to be
a key factor in the failure of current strategies and any
proposed therapies that do not take this phenomenon into
account are likely to be misleading. Furthermore, most studies
[3] reported optimized strategies over very short treatment
durations. Unless the goal of the study is to eradicate the
virus or to achieve immunological control after cessation of
treatment (this has as yet been proven to be very difficult
to achieve due to the replication of virus in macrophages
and long-lived cells ([6], [7]), optimal control studies should
aim in designing a strategy which increases the long-term
treatment benefit. Investigating short horizons might lead to
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results which are optimal over that short horizon but are not
necessarily optimal in the long-term.

Many studies to date ([1], [2], [5]) considered the effect of
treatment through an efficacy term. Different drugs, however,
are associated with varied efficacies in the body as well as
with different side-effects, hence, treatment planning oughts
to be drug-specific. Krakovska and Wahl [3] produced optimal
strategies by considering the varied efficacies of different
drugs, however, in their formulation all drugs carried a similar
toxicity rating. This is rarely true and a side-effect index
which takes into account the different toxicities associated with
different drugs has to be considered. Lastly, no two individuals
respond to infection and treatment in quite the same and a
methodology which allows for patient-specific planning needs
to be investigated.

We present here a mathematical model which considers all
cell populations known to play a key role in HIV infection,
including the drug-resistant virus population. The model is
compared to literature-reported clinical data from different
patients for the entire trajectory of the disease and used as a
tool for the planning of treatment. The methodology proposed
here allows for the formulation of long-term patient-specific
drug-specific strategies. The paper is ordered as follows:
Section I presents a mathematical modeling approach to the
investigation of HIV treatment strategies, Section II presents
the analysis of the optimal control results and a methodology
for the formulation of therapy on an individual basis, Section
III involves a discussion on the findings, and Section IV
outlines the most important conclusions of this study.

II. METHODS

A. HIV dynamics

HIV infection can be characterised as a disease of the
immune system, with progressive depletion of defensive cells,
resulting in immunosuppression. Viruses cannot reproduce
without the aid of living cells. HIV can infect a number of cells
in the body, however, its main target are the CD4+ T-cells. HIV
replicates inside infected cells and the newly-produced virus
can now infect more cells. CD4+ T-cells are vital as they help
facilitate the body’s response to many common but potentially
fatal infections. The HIV life cycle directly or indirectly causes
a reduction in the number of these cells, rendering the body’s
immune system unable to defend itself against these infections.
The key phenomena in the HIV infection cycle are illustrated
in Fig. 1.

Once infected, the patient experiences a rapid decrease
in the number of CD4+ T-cells, following a rapid increase
in the virus population. The immune system (CTLs and
macrophages) responds by killing infected cells and virus par-
ticles, causing a rapid increase in the number of T-cells. During
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Fig. 1. Key phenomena during the course of HIV infection in (a) CD4+ T-
cells, (b) latently-infected CD4+ T-cells, and (c) macrophages. Once infected
a proportion 1 − ψ of CD4+ T-cells passes into the latently-infected cell
population. Reproduced from [9].

this time the virus population experiences a rapid depletion.
A period of almost eight years follows (often referred to as
the asymptomatic stage or latency) whereby CD4+ T-cells
experience a constant but slow depletion. The virus infects
more and more cells and thus slowly increases in number.
After about eight years the immune system collapses and the
virus population experiences an exponential growth. On the
other hand, uninfected T-cells deplete at a high rate, crossing
the 200 mm−3 line which marks the “progression to AIDS”
period. Once patients are detected with AIDS, they survive
for about one more year as suggested by [8]. Furthermore,
once infected a proportion 1 − ψ of CD4+ T-cells (Fig. 1(b))
passes into the latently-infected cell population. These latently-
infected cells may be activated after a long time, and start
reproducing virus.

During the course of HIV infection macrophages are also
infected (Fig. 1(c)). The virus replicates slowly inside these
cells and, unlike CD4+ T-cells, the macrophages are not killed
but continue to accommodate more virus and protect it against
immune responses and drugs. Also of importance is the fact
that infected macrophages appear to be able to cause apoptosis
of CD4+ T-cells [10]. Clinical studies [11] have suggested that
during the late stages of the disease most virus comes from
infected macrophages, hence the exponential rise.

B. HIV model

The following components are considered: T , uninfected T-
cells; T1, T-cells infected by wild-type virus (drug-sensitive);

T2, T-cells infected by mutated virus (drug-resistant); TL1,
latently-infected T-cells infected by wild-type virus; TL2,
latently-infected T-cells infected by mutated virus; V1, wild-
type virus (drug-sensitive); and V2, mutated virus (drug-
resistant). The model also considers the uninfected and in-
fected macrophage populations, M , M1 and M2, respectively,
as well as the cytotoxic T-lymphocyte population, CTL. The
governing set of differential equations is given by (1)-(11).

dT

dt
= s1 +

p1(V1 + V2)T

V1 + V2 + S1

− (1 − u1)(k1V1 + k2M1)T (1)

−ϕ(k1V2 + k2M2)T + rT (1 −

T + T1 + T2 + TL1 + TL2

Tmax

)

−δ1T

dT1

dt
= (1 − u1)ψ(k1V1 + k2M1)T + α1TL1 − δ2T1 (2)

−k3T1CTL

dT2

dt
= ψϕ(k1V2 + k2M2)T + α1TL2 − δ2T2 − k3T2CTL (3)

dTL1

dt
= (1 − u1)(1 − ψ)(k1V1 + k2M1)T − α1TL1 − δ3TL1 (4)

dTL2

dt
= (1 − ψ)ϕ(k1V2 + k2M2)T − α1TL2 − δ3TL2 (5)

dM

dt
= s2 +

p2(V1 + V2)M

V1 + V2 + S2

− (1 − f1u1)k4V1M − ϕk4V2M (6)

−δ4M

dM1

dt
= (1 − f1u1)k4V1M − δ5M1 − k5M1CTL (7)

dM2

dt
= ϕk4V2M − δ5M2 − k5M2CTL (8)

dCTL

dt
= s3 + k6(T1 + T2)CTL + k7(M1 + M2)CTL − δ6CTL (9)

dV1

dt
= (1 − u2)(1 − μ)k8T1 + (1 − f2u2)(1 − μ)k9M1 (10)

+μϕk8T2 + μϕk9M2 − (k10T + k11M)V1 − k12V1M

−δ7V1

dV2

dt
= (1 − μ)ϕk8T2 + (1 − μ)ϕk9M2 + (1 − u2)μk8T1 (11)

+(1 − f2u2)μk9M1 − (k10T + k11M)V2 − k12V2M

−δ7V2

(1) characterises the changes in the uninfected T-cell pop-
ulation, T . The first two terms on the RHS of (1) represent
the sources of new T-cells. They incorporate cells from the
thymus, bone marrow, and general production. It is assumed
that there exists a constant thymic source, s1, as well as a
proliferation term due to an immune response. T-cells have
finite lifespans; the average of which is 1/δ1, where δ1 is the
death rate of the uninfected T-cells. The last two terms on the
RHS of (1) represent the infection of T-cells by both virus
and infected macrophages (drug-sensitive and drug-resistant
strain). Constant rates of infectivity k1 and k2 are assumed.
Consideration of macrophages is regarded essential since this
population plays a vital role in HIV progression. The logistic
term in (1) does not allow the T-cell population to exceed a
maximum concentration, Tmax following antiretroviral treat-
ment ([12],[13]).

(2)-(5) describe changes in the infected and latently-infected
T-cell populations, T1, T2, TL1, TL2. The first term on the RHS
of the equations represents the increase in number of infected
cells. Once infected, a proportion of T-cells, ψ, passes into the
infected T-cell population, whereas a proportion 1−ψ passes
into the latently-infected T-cell population. These latently-
infected cells might become activated after a long time and
start reproducing virus. This activation is represented through
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the α1TL1 and α1TL2 terms in (2)-(5). Infected cells are
lost by such processes such as natural death and immune
responses. The rate at which CTLs kill infected T-cells is given
by k3 in (2)-(3).

The population of macrophages increases in terms of the
constant source of new cells, s2, and its increase due to the
immune response (6). The latter term depends on the number
of virus particles and the increase rate, p2. According to [10],
when T-cells signal macrophages that the virus is non-self (i.e.,
an ’invader’), the latter divide and become more aggressive.
Thus, it was considered essential to include this behaviour in
the model. Macrophages are lost through infection by virus at
a rate of k4, and through natural death at a rate of δ4. In (7)
and (8) the gain terms carry over from the loss terms in (6).
Infected macrophages (both strains) are lost to natural death
and to immune responses. The rate at which CTLs kill infected
macrophages is given by k5.

The rate of change of CTLs is given by (9). These cells
are generated at a constant rate, s3, and proliferate with a
rate described by rate constants, k6 and k7, proportional to
the current amount of the same infected T-cells and infected
macrophages, respectively. CTLs die at a rate δ6.

(10) and (11) describe the rate of change in the drug-
sensitive (V1) and drug-resistant (V2) virus population, re-
spectively. These populations increase due to production of
virus from drug-sensitive and drug-resistant infected T-cells
and macrophages, respectively. For example, the amount of
V2 produced from T2 and M2 is given by (1 − μ)k8T2 and
(1 − μ)k9M2, respectively, where k8 and k9 are the rates
of production per unit time in T-cells and macrophages. The
amount of V2 produced from T1 and M1 is given by μk8T1

and μk9M1, respectively, where μ represents the percentage of
virus mutation (V1 to V2, and vice versa). Virus is lost through
the terms k10ViT and k11ViM , effectively accounting for the
virus lost when infecting T-cells and macrophages without
producing new virus, e.g., as a result of the infected cell’s
natural death or through the action of CTLs. Virus is also lost
through natural death (δ7Vi) as well as through an immune
response (k12ViM ).

Viral mutations are accounted in the model via the param-
eter μ, which represents the probability of a mutation per
replication cycle (V1 to V2, and vice-versa). This approach has
also been used in other studies ([14], [15]) and takes indirectly
into account the mutations occuring in both the transcription
and production stage of the replication cycle. The reduced
fitness of V2 in terms of infecting and replicating capacity is
considered in the model equations above through parameter
ϕ.

Parameters u1 and u2 (u1, u2 ∈ [0, 1], with 0 and 1 indicat-
ing no treatment and full treatment, respectively) represent the
efficacy of reverse transcriptase inhibitors (RTI) and protease
inhibitors (PI), respectively. RTIs inhibit the infection of T-
cells and macrophages by virus whereas the PIs inhibit the
production of infectious virus from already infected cells.
It is important to note that these drugs have no effect on
the resistant virus population. Treatment on macrophages is
not as effective as that on T-cells hence, the term fiui [2].
Estimation of drug efficacies in the body requires use of a

Fig. 2. Concentration-time profiles for (a) CD4+ T-cell and (b) virus for an
untreated typical-progressor to AIDS. Model predictions from Hadjiandreou
et al. [23]. Comparison with clinical data from the studies by [18] (+), [24]
(◦), [25] (♦), [19] (×), and [20] (�). Dotted line marks progression to AIDS.

TABLE I
PARAMETER VALUES USED IN THE MODEL. UNLESS OTHERWISE STATED,

BEST FIT VALUES ESTIMATED (EST.) FROM CLINICAL DATA OF T-CELLS

([18], [19], [20]) WHEN NO TREATMENT IS USED.

Parameter Value Source Literature Units
s1 10 [13] 5 − 36 mm−3d−1

s2 0.15 [13] 0.03 − 0.15 mm−3d−1

s3 5 Est. − mm−3d−1

p1 0.16 Est. 0.01 − 5 d−1

p2 0.15 Est. − d−1

S1 55.6 Est. 1 − 188 mm−3

S2 188 Est. − mm−3

k1 3.87 x10−3 Est. 10−8
− 10−2 mm3d−1

k2 1 x10−6 [13] 10−6 mm3d−1

k3 4.5 x10−4 Est. 10−4
− 1 mm3d−1

k4 5.22 x10−4 Est. 4.7x10−9
− 10−3 mm3d−1

k5 3 x10−6 Est. − mm3d−1

k6 3.3 x10−4 Est. 10−6
− 10−3 mm3d−1

k7 6 x10−9 Est. − mm3d−1

k8 5.37 x10−1 Est. 2.4x10−1
− 5x102 d−1

k9 2.85 x10−1 Est. 5x10−3
− 3x102 d−1

k10 7.79 x10−6 Est. 10−8
− 10−2 mm3d−1

k11 1 x10−6 Est. 4.7x10−9
− 10−3 mm3d−1

k12 4 x10−5 Est. − mm3d−1

δ1 0.02 [13] 0.01 − 0.02 d−1

δ2 0.28 Est. 0.24 − 0.7 d−1

δ3 0.05 Est. 0.02 − 0.069 d−1

δ4 5 x10−3 [13] 0.005 d−1

δ5 5 x10−3 [13] 0.005 d−1

δ6 0.015 [21] 0.015 − 0.05 d−1

δ7 2.39 [13] 2.39 − 13 d−1

α1 3 x10−4 Est. − d−1

ψ 0.97 Est. 0.93 − 0.98 −

ϕ 0.9 [22] 0.1 − 0.9 −

r 0.03 [13] 0.03 d−1

Tmax 1500 [13] 1500 − 2000 mm−3

μ 0.001 [14] 3x10−5-1x10−3
−

fi 0.34 [2] 0.34 −

pharmacokinetic model which is described in Appendix A.
In specifying model parameters and initial conditions for

the model, estimated values were generated from clinical data
of T-cell dynamics of typical-progressors when no therapy
is used. This was done using a least-squares method code
written in Mathematica 5.1TM [16]. Some parameter values
were taken directly from the literature. Estimates of parameter
values are given in Table I. Furthermore, T (0) = 1000
mm−3, M(0) = 30 mm−3, V1(0) = 0.001 mm−3 [13], and
CTL(0) = 333 mm−3 [17]. It should be noted that the initial
concentrations for the infected populations and V2 were set to
0.
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Fig. 2 presents data from five clinical studies representing
the typical progression of the disease, with the results of the
model given for direct comparison. The predictions for the T-
cells and virus populations show good agreement with clinical
data for HIV-infected patients during the same time period.
It is important to note that although clinical data for the T-
cells alone were used in the parameter estimation, the model
is able to replicate clinical data for the virus population as
well, including the exponential rise of the virus towards the
end-stages of the disease. This further validates the modeling
work in this study.

C. Rapid-progressors and long-term non-progressors

In this section, we investigate the ability of the model to
replicate clinical data from other progressors to AIDS, namely
rapid-progressors (RPs) and long-term non-progressors (LT-
NPs). RPs are those patients whose T-cell levels decrease
below the threshold of AIDS after approximately 3-5 years
[5]. These constitute a small proportion (10% [26]) of infected
individuals. The majority of patients progress to AIDS within
8-10 years after initial infection and are known as typical-
progressors (see above). LTNPs are a small proportion (10-
17% [26]) of the infected population who evade the typical
progression to AIDS without the help of therapy for as long
as 15-20 years ([5], [27]). The differences in the rate of
progression between individuals has been suggested to be
based on factors such as immune system’s status, age, and
genetic profile ([5], [28]). Here, the parameters associated with
the immune system alone are estimated using a least-squares
code written in Mathematica 5.1TM ; namely, the action of
the CTLs (k3, k5) and macrophages (k12) on the infected cells
and virus, respectively, as well as the increase of uninfected
cells (T-cells, macrophages, and CTLs) as part of the immune
response (p1, p2, S1, S2, k6, and k7). The estimated parameter
values are listed in Table II with plots depicting cell population
concentration-time profiles for both RPs and LTNPs shown in
Fig. 3. Clinical data for T-cell dynamics from RPs and LTNPs
have been plotted alongside model results for comparison.

It is important to note the effect of the immune system
parameters on the degree of progression to AIDS. For the
RP, a reduction in these parameters (e.g., 12% decrease of
proliferation rate of CTLs, k6 and k7) results in a weaker
immune response (Fig. 3(c)), hence, an increased virus load

TABLE II
PARAMETER VALUES USED IN THE MODEL FOR A RP AND A LTNP. THE

VALUES OF THE REMAINING PARAMETERS ARE SIMILAR TO THE ONES

FOR THE TYPICAL-PROGRESSOR’S CASE (TABLE I).

Parameter RP Typical-progressor LTNP Units
p1 0.13 0.16 0.2 d−1

p2 0.1365 0.15 0.1638 d−1

S1 50.0 55.6 55.6 mm−3

S2 169.2 188 188 mm−3

k3 3.96 x10−4 4.5 x10−4 9.9 x10−4 mm−3

k5 2.64 x10−6 3 x10−6 6.6 x10−6 mm−3

k6 2.9 x10−4 3.3 x10−4 3.63 x10−4 mm−3

k7 5.28 x10−9 6 x10−9 6.6 x10−9 mm−3

k12 3.52 x10−5 4 x10−5 4.4 x10−5 mm−3

r 0.03 0.03 0.072 d−1

Fig. 3. Concentration-time profiles for T-cells (a-b), CTLs (c), and total
virus (d) for an untreated RP and LTNP. Comparison with clinical data from
the clinical studies by [29] (�), [18] (♦), and [30] (�). The data from [30]
(�) involved 7 patients, hence the mean and standard error bars. Dotted line
marks progression to AIDS.

(Fig. 3(d)) and a more rapid decline in the T-cell count
(Fig. 3(a)). Model results for T-cell dynamics show good
agreement with clinical data from one patient. For the LTNP
case, an increase in the immune system parameters (e.g., 10%
increase in k6 and k7) results in a stronger immune response
(Fig. 3(c)), hence, a reduced virus load (Fig. 3(d)) and a
considerably slower depletion of T-cells (Fig. 3(b)). It is worth
noting the difference in the life expectancies of the three
types of progressors (RP: 6 years, typical: 9.5 years, LTNP:
15.5 years). Model results for the T-cell dynamics have been
compared with clinical data from patients displaying LTNP
characteristics with good agreement. This match of clinical
data further validates the modeling work in this study, which is
able to replicate the dynamics of different types of progressors.
This has been achieved by estimating only the parameters
associated with the immune system response. The performance
of the immune system has been suggested ([5], [24]) to be one
of the main factors determining the degree of progression to
AIDS, and the ability of the model to reproduce some features
of this phenomenon further validates its application.

D. Drug Related side-effects

An optimal strategy clearly involves the successful control
of the disease. Another parameter which has to be considered
in the formulation of treatment strategies, however, is the
intensity of the drug-related side-effects. Neglecting this might
prove fatal to the patient. The relationship between antiretro-
viral drugs and their side-effects is well documented [31].
Table III summarises the observed side-effects as a result of
three widely used antiretroviral drugs at standard dosage (one
PI, RDV, and two RTIs, 3TC and ZDV). More specifically,
the table summarises the observed frequency of the side-
effect within a population as well as its relative magnitude.
The latter is clearly subjective, e.g., “chills” should be less
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undesirable than an “increase in blood sugar” or ”diaorrhea”.
A drug-specific side-effect index formulation in an attempt to
investigate the impact of side-effects in the optimal design of
treatment strategies is presented in Appendix B.

III. RESULTS AND DISCUSSION

Here, patient and drug-specific optimal treatment profiles for
HIV-infected patients employing a widely used drug regime
(RDV, 3TC, ZDV) and drug concentrations as controls are
generated using gPROMS 3.0.3 [33]. In this work, an optimal
treatment is one that prolongs progression to AIDS so as to
evade opportunistic infections, maintains a high CD4+ T-cell
count, as well as reduces the impact of drug-associated side-
effects.

A. Structured treatment interruptions

Hadjiandreou et al. [9] involved the investigation of
treatment strategies using drug efficacies as controls. Both
continuous therapy and STIs were considered and the results
suggested that, unlike continuous therapy, STIs are very ef-
fective in controlling disease progression. It was suggested
that the key to the successful implementation of STI therapy,
which is not as yet included in antiretroviral guidelines, is
the optimal management of the magnitude and frequency of
treatment interruptions in an attempt to fascilitate the interplay
between the drug-sensitive and drug-resistant virus strains. In
this way, neither the sensitive nor the resistant strain increase
and disease progression can be controlled as a result.

That work is extended here by the formulation of a dynamic
optimization problem of STI therapy for the case of a typical-
progressor (see Fig. 2 and Table I) using the drug-specific
model presented earlier. The optimal control problem takes
the form of OCP1:

OCP1

max
C1, C2, C3

J(tf , C)

s. t. J(tf , C) =
R t

f

t0
[A1T − A2Se] dt (12)

.
x = f(t, x, C),

T � TAIDS ,

t ∈ [t0, tf ]

where
.

x = f(t,x,C) represents the governing set of
equations ((1)-(11), (13)-(18)), t ∈ [t0, tf ] sets the finite
horizon of the optimization, and TAIDS defines the condition
for the undesirable transition from HIV to full-blown AIDS.
The benefit of treatment is based on the maximisation of
T-cells and the minimisation of the severity of side-effects
associated with the drug regime over the treatment horizon. A
fixed life expectancy of 10,000 days (�28 years) after initial
infection is assumed. Bearing in mind that current treatment
strategies extend life expectancy to a maximum of around 19
years depending on the type of patient and drug regime used
([34]-[36]), it is believed that an estimated life expectancy of
∼28 years after initial infection is a realistic target to consider.

Like other problems of discontinuous nature, optimization
of the pharmacokinetics during multiple doses adds further

TABLE III
FREQUENCIES AND ESTIMATED RELATIVE MAGNITUDE OF THREE WIDELY

USED DRUGS. SIDE-EFFECT REPORTED IN > 15% (×)OF INDIVIDUALS,
5 − 15 % (�), < 5% (•), AND SIDE-EFFECT NOT REPORTED IN

INDIVIDUALS (+). SIDE-EFFECT IS CONSIDERED “STRONGLY

UNDESIRABLE” (***), UNDESIRABLE (**), AND “WEAKLY

UNDESIRABLE” (*).

SIDE-EFFECT DRUG
Following laboratory tests RDV 3TC ZDV
Anemia ** • • ×

Leukopenia ** • • ×

Neutropenia ** • � ×

Thrombocytopenia ** • • •

↑ Alkaline Phosphatase ** • + +

↑ Amylase (pancreas) ** • • +

↑ Bilirubin (liver) ** • • •

↑ Cholesterol *** × + +

↑ Creatinine (kidney) ** � + +

↑ Glucose (blood sugar) *** + + +

↑ Liver functions ** � • ×

↑ Triglycerides ** × + +

As symptoms RDV 3TC ZDV
Abdominal pain ** � � ×

Altered taste * × + �

Anorexia ** � � ×

Arthalgia ** • � ×

Chills * • � ×

Constipation * • + •

Depression * • � •

Diaorrhea *** × × ×

Dizziness ** � � �

Fatigue ** × × �

Fevers ** • � ×

Headache ** � × ×

Insomnia * • � �

Malaise ** � × ×

Menstrual irregularities * × + +

Myalgia (musle pain) ** � � ×

Nausea *** × × ×

Nephrolithiasis ** + + +

Neurological symptoms *** � • •

Neuropathy ** • � •

Pancreatitis *** • � +

Paresthesia ** × + •

Rash *** • � ×

Seizures * + + +

Vomiting *** × � �

Reproduced from [31] and [32]

complexity to the problem. The latter is already quite com-
plicated due to the highly non-linear nature of the system
of equations involved. In order to reduce the complexity
associated with modeling pharmacokinetics in the optimiza-
tion, the concentration of drug i during dosage interval τ is
modelled as following an average concentration during that
time interval. Moreover, the treatment levels are fixed during
the optimization in an attempt to reduce the complexity further.
Administration of fixed drug dosages over treatment intervals
also helps compliance from clinicians and patients.

Treatment initiation occurs at T < 350 mm−3 (Antiretro-
viral Guidelines [37]) with fixed values for average C1, C2,
and C3 at [0.0472, 0.0205, 0.00659]T and [0.0, 0.0, 0.0]T

during ON and OFF treatment, respectively. Given initiation
at T < 350 mm−3 these values (equivalent to u = [0.1, 0.3]T )
were found (using optimization) to be the minimum concen-
trations that are able to achieve the target life expectancy of
10,000 days. The ON and OFF periods are allowed to vary
between 10 � ON, OFF � 150 days, thereby excluding
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Fig. 4. Optimal control profiles of C1, C2, and C3 for STIs for a treatment-
naive typical-progressor. Objective function: J(tf , u) =

R t
f

t0
[A1T −

A2Se] dt. Initiation of therapy is at T < 350 mm−3 (� 2, 500 days after
initial infection). Shaded region indicates treatment spell. Dotted line marks
progression to AIDS.

extended periods of OFF treatment that could be fatal to
the patient ([38], [39]). Since the magnitudes of the T-cell
population and the side-effect index are on different scales,
weighting values A1 = 1 mm3 and A2 = 1, 000 are used. The
optimization solution is sensitive to an increase in A2, with
low administration of both drugs as A2 increases (results not
shown). Lower T-cell population numbers are achieved as a
result. The number of control intervals used is 100 and the
piecewise-constant profiles obtained are presented in Fig. 4.
The total CPU time required for this optimization was 280.2
s.

The results depicted in Fig. 4 suggest that STIs are very
effective in controlling disease progression in HIV-infected
patients. Neither the drug-sensitive nor the drug-resistant virus
strain grows in an uncontrolled manner and as a result the
T-cell count is maintained above the threshold of AIDS for
longer. During the early stages of optimised STIs, the schedule
requires maximum ON (150 days) and minimum OFF (10
days) periods. This slows down the increase of the drug-
sensitive strain, which is the main problem for a patient that
has not developed any resistance. The optimized schedule is
successful in reducing the total ON treatment to 74% of total
therapy and the total side-effect index in this STI scenario
is 880. In way of comparison, the ST

e value obtained under
current continuous treatments (600 mg RDV, 150 mg 3TC,
300 mg ZDV, twice daily) for the same treatment horizon

was 3,640. This suggests that, on top of extending the life-
expectancy of patients considerably, the optimized schedules
presented here are able to reduce the impact of drug-associated
side-effects markeably. In doing this, the patients also enjoy
an increased number of drug-free periods. All these imply
that the optimal strategies proposed here offer a considerable
advantage to the patient.

B. Patient-specific treatment

So far, the optimal strategies proposed have been formulated
for patients displaying the general characteristics of typical-
progressors (the majority of patients in this category progress
to AIDS after ∼10 years). No two individuals respond to
infection and treatment in quite the same way, however, and
this section investigates to what extent these strategies are able
to extend the life-expectancy of other patients. Furthermore,
this section presents a methodology for the formulation of
patient-specific treatment planning.

The patient involved in this section is taken from the study
by [40]. This patient falls in the category of typical-progressors
(progression to AIDS after 5-15 years; [5], [26]), however, it
is clear that progression to AIDS occurs considerably earlier
for this individual (after ∼5 years; see Fig. 5) when compared
to the majority of typical-progressors (progression after ∼10
years; see Fig. 2). The concentration-time profile for T-cells
for this patient as predicted by the therapy model is presented
in Fig. 5. In replicating the observed clinical data, only the
immune system parameters (reduced proliferation of immune
cells, p1, p2, S1, S2, k6, k7; action of CTLs and macrophages,
k3, k5, k12) have been altered (see Table IV); it is believed that
this patient exhibited a weaker immune status [6], hence the
faster progression to AIDS.

Treatment is initially administered according to the general
STI schedule reported in Fig. 4. The results are not encourag-
ing; the projected survival-time after initial infection for this
patient is 2, 800 days (Fig. 6(a)), hence, the proposed schedule
is not effective in extending the time before progression to
AIDS occurs noticeably.

These results confirm that a general treatment framework is
not effective and treatment has to be assessed on an individual
basis. Optimal treatment planning for a specific patient in-
volves: (a) monitoring the T-cell count of the individual down
to T = 350 mm−3, (b) prediction of HIV dynamics specific to
that individual by fitting the model to data, and (c) formulation

TABLE IV
PARAMETER VALUES FOR AN UNTREATED PATIENT FROM THE STUDY BY

[40]. THE REMAINDER OF THE PARAMETER VALUES ARE SIMILAR TO THE

ONES FOR THE TYPICAL-PROGRESSOR’S CASE (TABLE I)

Parameter Value Units
p1 0.19 d−1

p2 0.15 d−1

S1 55.6 mm−3

S2 188 mm−3

k3 4.16 x10−4 mm−3

k5 2.78 x10−6 mm−3

k6 3.01 x10−4 mm−3

k7 5.5 x10−9 mm−3

k12 3.7 x10−5 mm−3
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Fig. 5. Uninfected T-cell concentration-time profile over the course of HIV
infection for an untreated patient from the study by [40] (×). Results have
been obtained by fitting the model to the data down to T = 350 mm−3.
Results show good agreement with the remaining data (T < 350 mm−3).
Dotted line marks progression to AIDS.

Fig. 6. Treatment studies on the patient [40] depicted in Fig. 5. Initiation
of therapy is at T < 350 mm−3 (� 1, 700 days after initial infection).
Application of (b) STI schedule reproduced from Fig. 4 for a typical-
progressor and (b) patient-specific optimal treatment. Dotted line marks
progression to AIDS. Point D indicates projected survival-time when no
treatment is administered.

of the patient-specific treatment strategy initiated at T < 350
mm−3. In the case of the patient in this section, the model
predictions in Fig. 5 have been obtained by fitting the model
to the data down to T = 350 mm−3, and the predictions
show good agreement with the remaining data in Fig. 5 (for
T < 350 mm−3). The patient-specific optimal treatment was
then formulated and when administered was able to prolong
the progression to AIDS to more than 10, 000 days (Fig. 6(b)),
thereby emphasising the importance of formulating treatment
schedules on an individual basis.

The results presented in this study are based on the predic-
tions of mathematical models. Such models offer a simplified
description of reality, as do virtually all modeling attempts.
The present work has only dealt with the infection of CD4+T-
cells and macrophages. Other cells (e.g., dendritic cells) may
become infected and may exhibit different kinetics. Also,
direct cell-to-cell transmission of virus has not been considered
and death of cells due to effects other than direct viral killing
and natural death has been ignored. Furthermore, time delays
should also be considered, hence, treating interactions between
cells, virus, and drugs as non-instantaneous [8]. As far as the
immune response is concerned, the effect of the suppressor
cells has been assumed to be minimal compared to that of the
CTLs. Furthermore, we have no control over the fitness of the
drug-resistant strain [22]. In fact, mutations at every fitness
level are likely to occur and the optimal treatment would be

different in that case. Lastly, the drug-resistant virus has been
modelled as one that has developed resistance to all drugs
in an attempt to formulate optimal treatment strategies for
this group of patients. This constitutes a large percentage of
HIV-infected patients [41], nevertheless, inclusion of variables
describing different drug-resistant strains is likely to result
in a model which describes reality more closely. Another
assumption in the model is lack of terms describing ageing
factors. The age/ageing of individuals has been suggested [28]
to be an important factor determining disease progression and
response to treatment. In this work, the schedules run over
long periods of time and the parameters are likely to change
as the individual involved ages. As a result, the treatment might
not necessarily be completely effective for the entire treatment
horizon and a model accounting for this is likely to result in
further improved predictions. We acknowledge these concerns
and investigation of the results presented in this work through
clinical or experimental studies is highly desirable.

IV. CONCLUSION

In this study an optimal control approach was considered
in an attempt to formulate HIV treatment strategies. The
optimization results suggest that a general treatment protocol
cannot be proposed and treatment planning has to be produced
on a case-by-case basis. Drug-specific treatment involves con-
sideration of a side-effect index by using a well-documented
side-effect chart whereas patient-specific treatment involves
firstly the estimation of the patient-specific model parame-
ters using clinical data, and subsequently the formulation of
the treatment. The results presented in this work identified
considerable scope for the improvement of current treatments,
extending survival-time considerably and reducing the index
associated with the side-effects of drugs markeably. The results
suggest that STI therapy offers a promising alternative to
current guidelines and should encourage further experimental
and clinical work for validation purposes.

APPENDIX A
PHARMACOKINETIC MODEL

Drug efficacies are given as a function of the concentration
and effectiveness of the drug. For the drug regime involved
(one PI: RDV, two RTIs: 3TC, ZDV), the RTI and PI efficacies
are given by [42]:

u1(t) =
(C2(t)/IC

2
50) + (C3(t)/IC

3
50)

1 + (C2(t)/IC2
50

) + (C3(t)/IC3
50

)
(13)

u2(t) =
C1(t)

C1(t) + ω IC1
50

(14)

where u1(t) and u2(t) range from 0 to 1 and indicate RTI and
PI efficacy, respectively, and Ci(t) and ICi

50 indicate plasma
and median inhibitory drug concentrations, respectively.

(14) presents a pharmacokinetic model describing drug
concentration in the peripheral blood as a function of drug
dosage. For simplicity, concentrations are modelled using a
one-compartment open model with first-order absorption and
elimination [42] and fixed pharmacokinetic parameters. Let
Ci(t) be the plasma concentration of drug i at time t. The
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model between dosages, (i.e., tl < t < tl+1) can be written as
follows [42]:

Ci(t) = Ci(tl) e−ki

e
(t−t

l
) (15)

+
FiDi

V i
c

ki
a

ki
a + ki

e

[e−ki

e
(t−t

l
) − e−ki

a
(t−t

l
)] i ∈ N, l ∈ n

where i is the index that denotes drugs; tl is the time at
which dose Di is administered; Fi is the absolute bioavail-
ability of drug i (the fraction of dose available); ki

a is the
absorption rate of drug i; ki

e
= Cli

V i

c

is the elimination rate
constant of drug i; Cli is the clearance of drug i; V i

c
is the

volume of distribution of drug i; Ci(t0) = 0; and Cli, V i
c ,

ki
a
> 0.
The model in (15) is solved in Mathematica 5.1TM for the

drug regime consisting of RDV, 3TC, and ZDV and the results
are plotted alongside respective clinical data with considerable
agreement (Fig. 7(i)). The pharmacokinetic parameters used in
the model are consistent with the manufacturers’ recommen-
dations ([44], [45]) and are given in Table V. For illustrative
purposes, the time-course of concentrations of these drugs
(all administered twice daily at standard dosage according
to antiretroviral guidelines) over the first 3 days of dosing
is plotted in Fig. 7(ii).

APPENDIX B
SIDE-EFFECT INDEX FORMULATION

The side-effect of a drug regime at a given time is given as
a function of the concentrations of the drugs involved, the rel-
ative magnitude of the side-effect, and its observed frequency
within a population. This has been presented previously in a
review study [32] and is given in (16):

Se(t) =
NX

i=1

ēi
Ci(t)

Ci

(16)

ēi =
ei

max
i∈N

(ei)
i ∈ N (17)

ei =
X

j∈J
i

(qj � hi, j) i ∈ N (18)

In this system of equations, the side-effect index, Se(t),
represents the magnitude of the side-effect of a drug regime at
time t. Ji is the set of side-effects related to drug i, Ci(t) is the
concentration of drug i at time t, Ci is the mean concentration
of drug i at steady-state at standard dosage (i.e., according to

TABLE V
PARAMETER VALUES USED IN THE PHARMACOKINETIC MODEL. VALUES

TAKEN FROM THE PRODUCT INFORMATION OF THE MANUFACTURERS

([44], [45]). PARAMETER τ REPRESENTS THE DOSING INTERVAL OF THE

PROPOSED DRUG REGIME.

Parameter RDV, C1 3TC, C2 ZDV, C3

D [mg] 600 150 300

ka [d−1] 2.4 12 12

Cl [L d−1] 1.48x104 5.6x102 2.69x103

Vc[ L] 28.7 91 112

F 1.0 0.86 0.64

τ [d] 1/2 1/2 1/2

IC50 [mg L−1] 0.11 0.34 0.13

Fig. 7. (i) Model predictions for the concentration of three drugs (a-c) during
treatment at standard dosage and steady-state conditions. Comparison with
clinical data from: [46] (∗),[47] (+), and [48] (×,♦, �). (ii) Time-course of
plasma concentrations of (a) RDV, (b) 3TC, and (c) ZDV at standard dosage
over the first 3 days of dosing.

antiretroviral guidelines), ei(ēi) is the magnitude (normalised
magnitude) of the side-effect caused by drug i at standard
dosage, hi,j is the frequency of individuals that present side-
effect j when subject to drug i at standard dosage, and qj

is the relative magnitude of side-effect j, i.e., “undesirabil-
ity”. This model is based on the additivity of the observed
frequencies and magnitudes of side-effects, and considers that
the magnitude of the side-effect index is proportional to the
amount of drug administered. When solving the system of
equations (16)-(17) above, the relative magnitudes of side-
effects are modelled as 0.1, 0.2, and 0.7 for “weakly undesir-
able”, “undesirable”, and “strongly undesirable”, respectively.
Although fuzzy logic techniques [43] may be used to describe
the transition from one state to another (e.g., “undesirable”
to “strongly undesirable”), this basic “metric” approach is
considered here in order to reduce complexity. Furthermore,
the observed frequencies of side-effects are modelled using
values of 0, 0.05, 0.15, and 0.6 to represent the case where
“side-effect has not been reported in individuals”, “side-effect
reported in less than 5% of individuals”, “side-effect reported
from 5% up to 15% of individuals”, and “side-effect reported
in more than 15% of individuals”, respectively.
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