Search results for: task based learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12759

Search results for: task based learning.

10509 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
10508 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
10507 Variance Based Component Analysis for Texture Segmentation

Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei

Abstract:

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Keywords: Principal Component Analysis; Variance Based Component Analysis; Defect Detection; Texture Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
10506 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: Close surfaces, high-order approach, numerical solutions, reaction-diffusion systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
10505 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
10504 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Authors: A.Muthuramalingam, S.Himavathi

Abstract:

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
10503 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process

Authors: Amer M. Momani, Abdulaziz A. Ahmed

Abstract:

The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.

Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136
10502 Design for Classroom Units: A Collaborative Multicultural Studio Development with Chinese Students

Authors: C. S. Caires, A. Barbosa, W. Hanyou

Abstract:

In this paper, we present the main results achieved during a five-week international workshop on Interactive Furniture for the Classroom, with 22 Chinese design students, in Jiangmen city (Guangdong province, China), and five teachers from Portugal, France, Iran, Macao SAR, and China. The main goal was to engage design students from China with new skills and practice methodologies towards interactive design research for furniture and product design for the classroom. The final results demonstrate students' concerns on improving Chinese furniture design for the classrooms, including solutions related to collaborative learning and human-interaction design for interactive furniture products. The findings of the research led students to the fabrication of five original prototypes: two for kindergartens ('Candy' and 'Tilt-tilt'), two for primary schools ('Closer' and 'Eks(x)'), and one for art/creative schools ('Wave'). From the findings, it was also clear that collaboration, personalization, and project-based teaching are still neglected when designing furniture products for the classroom in China. Students focused on these issues and came up with creative solutions that could transform this educational field in China.

Keywords: Product design, interface design, interactive design, collaborative education and design research, design prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
10501 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: Neural networks, motion detection, signature detection, convolutional neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
10500 Evaluation of Some Prominent Biomarkers in Rural Type – 2 Diabetes Mellitus Cases in Kanyakumari District, Tamil Nadu, India

Authors: Murugan. A., Jerlin Nirmala. F .

Abstract:

Life is beautiful. But, it is decided by genes, environment and the individual and shattered by the natural and / or the invited problems. Most of the global rural helpless masses are struggling for their survival since; they are neglected in all aspects of life including health. Amidst a countless number of miserable diseases in man, diabetes is becoming a dreaded killer and ramifying the entire globe in a jet speed. Diabetes control continues as a Herculean task to the scientific community and the modern society in the 21st century also. T2DM is not pertaining to any age and it can develop even during the childhood. This multifactorial disease abruptly changes the activities of certain vital biomarkers in the present rural T2DM cases. A remarkable variation in the levels of biomarkers like AST, ALT, GGT, ALP, LDH, HbA1C, C- peptide, fasting sugar, post-prandial sugar, sodium, potassium, BUN, creatinine and insulin show the rampant nature of T2DM in this physically active rural agrarian community.

Keywords: Alanine aminotransferase, Aspartate aminotransferase, Blood urea nitrogen, Glycated haemoglobin, Thyroid stimulating hormone

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
10499 GSM Position Tracking using a Kalman Filter

Authors: Jean-Pierre Dubois, Jihad S. Daba, M. Nader, C. El Ferkh

Abstract:

GSM has undoubtedly become the most widespread cellular technology and has established itself as one of the most promising technology in wireless communication. The next generation of mobile telephones had also become more powerful and innovative in a way that new services related to the user-s location will arise. Other than the 911 requirements for emergency location initiated by the Federal Communication Commission (FCC) of the United States, GSM positioning can be highly integrated in cellular communication technology for commercial use. However, GSM positioning is facing many challenges. Issues like accuracy, availability, reliability and suitable cost render the development and implementation of GSM positioning a challenging task. In this paper, we investigate the optimal mobile position tracking means. We employ an innovative scheme by integrating the Kalman filter in the localization process especially that it has great tracking characteristics. When tracking in two dimensions, Kalman filter is very powerful due to its reliable performance as it supports estimation of past, present, and future states, even when performing in unknown environments. We show that enhanced position tracking results is achieved when implementing the Kalman filter for GSM tracking.

Keywords: Cellular communication, estimation, GSM, Kalman filter, positioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3072
10498 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
10497 Is Cognitive Dissonance an Intrinsic Property of the Human Mind? An Experimental Solution to a Half-Century Debate

Authors: Álvaro Machado Dias, Eduardo Oda, Henrique Teruo Akiba, Leo Arruda, Luiz Felipe Bruder

Abstract:

Cognitive Dissonance can be conceived both as a concept related to the tendency to avoid internal contradictions in certain situations, and as a higher order theory about information processing in the human mind. In the last decades, this last sense has been strongly surpassed by the former, as nearly all experiment on the matter discuss cognitive dissonance as an output of motivational contradictions. In that sense, the question remains: is cognitive dissonance a process intrinsically associated with the way that the mind processes information, or is it caused by such specific contradictions? Objective: To evaluate the effects of cognitive dissonance in the absence of rewards or any mechanisms to manipulate motivation. Method: To solve this question, we introduce a new task, the hypothetical social arrays paradigm, which was applied to 50 undergraduate students. Results: Our findings support the perspective that the human mind shows a tendency to avoid internal dissonance even when there are no rewards or punishment involved. Moreover, our findings also suggest that this principle works outside the conscious level.

Keywords: Cognitive Dissonance, Cognitive Psychology, Information Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
10496 Utilizing Dutch Auction in an Agent-based Model E-commerce System

Authors: Costin Badica, Maria Ganzha, Maciej Gawinecki, Pawel Kobzdej, Marcin Paprzycki

Abstract:

Recently, we have presented an initial implementation of a model agent-based e-commerce system, which utilized a simple price negotiation mechanism–English Auction. In this note we discuss how a Dutch Auction involving multiple units of a product can be included in our system. We present UML diagrams of agents involved in price negotiations and briefly discuss rule-based mechanism exemplifying Dutch Auction.

Keywords: e-commerce, rule-based price negotiation mechanism, Dutch Auction, agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
10495 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence (AI) is invaluable in identifying crime. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISAs). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The proposed framework development is implemented using the Java Agent Development Framework, Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISAs and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5% of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: Artificial intelligence, computer science, criminal investigation, digital forensics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
10494 Investigation on Some Ergonomics and Psychological Strains of Common Militarism Protective Clothing

Authors: A. Ashjaran, A. Rashidi, R. Ghazi-Saeidi

Abstract:

Protective clothing limits heat transfer and hampers task performance due to the increased weight. Militarism protective clothing enables humans to operate in adverse environments. In the selection and evaluation of militarism protective clothing attention should be given to heat strain, ergonomic and fit issues next to the actual protection it offers. Fifty Male healthy subjects participated in the study. The subjects were dressed in shorts, T-shirts, socks, sneakers and four deferent kinds of militarism protective clothing such as CS, CSB, CS with NBC protection and CS with NBC- protection added. Ergonomically and psychological strains of every four cloths were investigated on subjects by walking on a treadmill (7km/hour) with a 19.7 kg backpack. As a result of these tests were showed that, the highest heart rate was found wearing the NBC-protection added outfit, the highest temperatures were observed wearing NBCprotection added, followed by respectively CS with NBC protection, CSB and CS and the highest value for thermal comfort (implying worst thermal comfort) was observed wearing NBC-protection added.

Keywords: Militarist protective clothing, Ergonomic, Heat strain, Thermal comfort

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
10493 Enhancement of Visual Comfort Using Parametric Double Skin Façades

Authors: Ahmed Ashraf Khamis, Sherif A. Ibrahim, Mahmoud ElKhatieb, Mohamed A. Barakat

Abstract:

Parametric design deemed to be one of icons of the modern architectural trends that facilitates taking complex design decisions counting on altering various design parameters. Double skin façades are one of the parametric applications that are used in parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using a parametric double skin façade. First, the design and optimization process was executed utilizing Grasshopper parametric design software package, in which the daylighting performance of the base case building model was compared with the one used in the double façade showing an enhancement in task plane illuminance by 180%. Second, execution drawings are made for the optimized design using Revit software. Finally, computerized digital fabrication stages of the designed model with various scales are demonstrated to reach the final design decisions using Simplify 3D for mock-up digital fabrication.

Keywords: Parametric design, Double skin façades, Digital Fabrication, Grasshopper, Simplify 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344
10492 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach

Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon

Abstract:

In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.

Keywords: Feature, intensity, contour, hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
10491 Probabilistic Electrical Power Generation Modeling Using Decimal to Binary Conversion

Authors: Ahmed S. Al-Abdulwahab

Abstract:

Generation system reliability assessment is an important task which can be performed using deterministic or probabilistic techniques. The probabilistic approaches have significant advantages over the deterministic methods. However, more complicated modeling is required by the probabilistic approaches. Power generation model is a basic requirement for this assessment. One form of the generation models is the well known capacity outage probability table (COPT). Different analytical techniques have been used to construct the COPT. These approaches require considerable mathematical modeling of the generating units. The unit-s models are combined to build the COPT which will add more burdens on the process of creating the COPT. Decimal to Binary Conversion (DBC) technique is widely and commonly applied in electronic systems and computing This paper proposes a novel utilization of the DBC to create the COPT without engaging in analytical modeling or time consuming simulations. The simple binary representation , “0 " and “1 " is used to model the states o f generating units. The proposed technique is proven to be an effective approach to build the generation model.

Keywords: Decimal to Binary, generation, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
10490 Exploiting Global Self Similarity for Head-Shoulder Detection

Authors: Lae-Jeong Park, Jung-Ho Moon

Abstract:

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
10489 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5682
10488 Islamic Education System: Implementation of Curriculum Kuttab Al-Fatih Semarang

Authors: Basyir Yaman, Fades Br. Gultom

Abstract:

The picture and pattern of Islamic education in the Prophet's period in Mecca and Medina is the history of the past that we need to bring back. The Basic Education Institute called Kuttab. Kuttab or Maktab comes from the word kataba which means to write. The popular Kuttab in the Prophet’s period aims to resolve the illiteracy in the Arab community. In Indonesia, this Institution has 25 branches; one of them is located in Semarang (i.e. Kuttab Al-Fatih). Kuttab Al-Fatih as a non-formal institution of Islamic education is reserved for children aged 5-12 years. The independently designed curriculum is a distinctive feature that distinguishes between Kuttab Al-Fatih curriculum and the formal institutional curriculum in Indonesia. The curriculum includes the faith and the Qur’an. Kuttab Al-Fatih has been licensed as a Community Activity Learning Center under the direct supervision and guidance of the National Education Department. Here, we focus to describe the implementation of curriculum Kuttab Al-Fatih Semarang (i.e. faith and al-Qur’an). After that, we determine the relevance between the implementation of the Kuttab Al-Fatih education system with the formal education system in Indonesia. This research uses literature review and field research qualitative methods. We obtained the data from the head of Kuttab Al-Fatih Semarang, vice curriculum, faith coordinator, al-Qur’an coordinator, as well as the guardians of learners and the learners. The result of this research is the relevance of education system in Kuttab Al-Fatih Semarang about education system in Indonesia. Kuttab Al-Fatih Semarang emphasizes character building through a curriculum designed in such a way and combines thematic learning models in modules.

Keywords: Islamic education system, implementation of curriculum, Kuttab Al-Fatih semarang, formal education system in Indonesia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
10487 Optimal Design of UPFC Based Damping Controller Using Iteration PSO

Authors: Amin Safari, Hossein Shayeghi

Abstract:

This paper presents a novel approach for tuning unified power flow controller (UPFC) based damping controller in order to enhance the damping of power system low frequency oscillations. The design problem of damping controller is formulated as an optimization problem according to the eigenvalue-based objective function which is solved using iteration particle swarm optimization (IPSO). The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies under a wide range of loading conditions. The simulation study shows that the designed controller by IPSO performs better than CPSO in finding the solution. Moreover, the system performance analysis under different operating conditions show that the δE based controller is superior to the mB based controller.

Keywords: UPFC, Optimization Problem, Iteration ParticleSwarm Optimization, Damping Controller, Low FrequencyOscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
10486 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot

Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux

Abstract:

One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.

Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
10485 A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities

Authors: Soumia Ichoua

Abstract:

In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.

Keywords: Air traffic management, sample average approximation, scenario-based approach, stochastic capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
10484 Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning

Authors: Tahseen Ahmed Jilani, Syed Muhammad Aqil Burney, C. Ardil

Abstract:

In the last 15 years, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of enrollments at the University of Alabama. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on frequency density based partitioning of the historical enrollment data. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting enrollments than the existing methods.

Keywords: Fuzzy logical groups, fuzzified enrollments, fuzzysets, fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221
10483 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation

Authors: S. Logeswari, K. Premalatha

Abstract:

Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.

Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
10482 Lexical Database for Multiple Languages: Multilingual Word Semantic Network

Authors: K. K. Yong, R. Mahmud, C. S. Woo

Abstract:

Data mining and knowledge engineering have become a tough task due to the availability of large amount of data in the web nowadays. Validity and reliability of data also become a main debate in knowledge acquisition. Besides, acquiring knowledge from different languages has become another concern. There are many language translators and corpora developed but the function of these translators and corpora are usually limited to certain languages and domains. Furthermore, search results from engines with traditional 'keyword' approach are no longer satisfying. More intelligent knowledge engineering agents are needed. To address to these problems, a system known as Multilingual Word Semantic Network is proposed. This system adapted semantic network to organize words according to concepts and relations. The system also uses open source as the development philosophy to enable the native language speakers and experts to contribute their knowledge to the system. The contributed words are then defined and linked using lexical and semantic relations. Thus, related words and derivatives can be identified and linked. From the outcome of the system implementation, it contributes to the development of semantic web and knowledge engineering.

Keywords: Multilingual, semantic network, intelligent knowledge engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
10481 Amplitude and Phase Analysis of EEG Signal by Complex Demodulation

Authors: Sun K. Yoo, Hee Cheol Kang

Abstract:

Analysis of amplitude and phase characteristics for delta, theta, and alpha bands at localized time instant from EEG signals is important for the characterizing information processing in the brain. In this paper, complex demodulation method was used to analyze EEG (Electroencephalographic) signal, particularly for auditory evoked potential response signal, with sufficient time resolution and designated frequency bandwidth resolution required. The complex demodulation decomposes raw EEG signal into 3 designated delta, theta, and alpha bands with complex EEG signal representation at sampled time instant, which can enable the extraction of amplitude envelope and phase information. Throughout simulated test data, and real EEG signal acquired during auditory attention task, it can extract the phase offset, phase and frequency changing instant and decomposed amplitude envelope for delta, theta, and alpha bands. The complex demodulation technique can be efficiently used in brain signal analysis in case of phase, and amplitude information required.

Keywords: EEG, Complex Demodulation, Amplitude, Phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4754
10480 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

Authors: Jungho Choi, Youngwan Cho

Abstract:

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643