Search results for: low data rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9565

Search results for: low data rate

7345 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: Multi-agent system, safety analysis, safety model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
7344 Extended Low Power Bus Binding Combined with Data Sequence Reordering

Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho

Abstract:

In this paper, we address the problem of reducing the switching activity (SA) in on-chip buses through the use of a bus binding technique in high-level synthesis. While many binding techniques to reduce the SA exist, we present yet another technique for further reducing the switching activity. Our proposed method combines bus binding and data sequence reordering to explore a wider solution space. The problem is formulated as a multiple traveling salesman problem and solved using simulated annealing technique. The experimental results revealed that a binding solution obtained with the proposed method reduces 5.6-27.2% (18.0% on average) and 2.6-12.7% (6.8% on average) of the switching activity when compared with conventional binding-only and hybrid binding-encoding methods, respectively.

Keywords: low power, bus binding, switching activity, multiple traveling salesman problem, data sequence reordering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
7343 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
7342 Compression and Filtering of Random Signals under Constraint of Variable Memory

Authors: Anatoli Torokhti, Stan Miklavcic

Abstract:

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
7341 A CTL Specification of Serializability for Transactions Accessing Uniform Data

Authors: Rafat Alshorman, Walter Hussak

Abstract:

Existing work in temporal logic on representing the execution of infinitely many transactions, uses linear-time temporal logic (LTL) and only models two-step transactions. In this paper, we use the comparatively efficient branching-time computational tree logic CTL and extend the transaction model to a class of multistep transactions, by introducing distinguished propositional variables to represent the read and write steps of n multi-step transactions accessing m data items infinitely many times. We prove that the well known correspondence between acyclicity of conflict graphs and serializability for finite schedules, extends to infinite schedules. Furthermore, in the case of transactions accessing the same set of data items in (possibly) different orders, serializability corresponds to the absence of cycles of length two. This result is used to give an efficient encoding of the serializability condition into CTL.

Keywords: computational tree logic, serializability, multi-step transactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
7340 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 559
7339 Evaluating the Baseline Characteristics of Static Balance in Young Adults

Authors: K. Abuzayan, H. Alabed, K. Zarug

Abstract:

The objectives of this study (baseline study, n = 20) were to implement Matlab procedures for quantifying selected static  balance variables, establish baseline data of selected variables which characterize static balance activities in a population of healthy young adult males, and to examine any trial effects on these variables. The results indicated that the implementation of Matlab procedures for quantifying selected static balance variables was practical and enabled baseline data to be established for selected variables. There was no significant trial effect. Recommendations were made for suitable tests to be used in later studies. Specifically it was found that one foot-tiptoes tests either in static balance is too challenging for most participants in normal circumstances. A one foot-flat eyes open test was considered to be representative and challenging for static balance.

Keywords: Static Balance, Base of support, Baseline Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
7338 Main Tendencies of Youth Unemployment and the Regulation Mechanisms for Decreasing Its Rate in Georgia

Authors: Nino Paresashvili, Nino Abesadze

Abstract:

The modern world faces huge challenges. Globalization changed the socio-economic conditions of many countries. The current processes in the global environment have a different impact on countries with different cultures. However, an alleviation of poverty and improvement of living conditions is still the basic challenge for the majority of countries, because much of the population still lives under the official threshold of poverty. It is very important to stimulate youth employment. In order to prepare young people for the labour market, it is essential to provide them with the appropriate professional skills and knowledge. It is necessary to plan efficient activities for decreasing an unemployment rate and for developing the perfect mechanisms for regulation of a labour market. Such planning requires thorough study and analysis of existing reality, as well as development of corresponding mechanisms. Statistical analysis of unemployment is one of the main platforms for regulation of the labour market key mechanisms. The corresponding statistical methods should be used in the study process. Such methods are observation, gathering, grouping, and calculation of the generalized indicators. Unemployment is one of the most severe socioeconomic problems in Georgia. According to the past as well as the current statistics, unemployment rates always have been the most problematic issue to resolve for policy makers. Analytical works towards to the above-mentioned problem will be the basis for the next sustainable steps to solve the main problem. The results of the study showed that the choice of young people is not often due to their inclinations, their interests and the labour market demand. That is why the wrong professional orientation of young people in most cases leads to their unemployment. At the same time, it was shown that there are a number of professions in the labour market with a high demand because of the deficit the appropriate specialties. To achieve healthy competitiveness in youth employment, it is necessary to formulate regional employment programs with taking into account the regional infrastructure specifications.

Keywords: Unemployment. analysis, methods, tendencies, regulation mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
7337 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez

Abstract:

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
7336 An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya

Authors: Nasser M. Amaitik, Nabil A. Alfagi

Abstract:

The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.

Keywords: Asbuilt, History, IMD, MMRA, PDBMS & PRMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
7335 Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Authors: M. Abdul-Rani, K. K. Chong, A. F. M. Hani, Y. B. Yap, A. Jamil

Abstract:

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Keywords: Imaging, Laser Triangulation, Structured Light, Volume Determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
7334 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana

Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta

Abstract:

Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.

Keywords: Biomass, fluorescent lamp, infrared radiation, microalgae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
7333 Arc Length of Rational Bezier Curves and Use for CAD Reparametrization

Authors: Maharavo Randrianarivony

Abstract:

The length  of a given rational B'ezier curve is efficiently estimated. Since a rational B'ezier function is nonlinear, it is usually impossible to evaluate its length exactly. The length is approximated by using subdivision and the accuracy of the approximation n is investigated. In order to improve the efficiency, adaptivity is used with some length estimator. A rigorous theoretical analysis of the rate of convergence of n to  is given. The required number of subdivisions to attain a prescribed accuracy is also analyzed. An application to CAD parametrization is briefly described. Numerical results are reported to supplement the theory.

Keywords: Adaptivity, Length, Parametrization, Rational Bezier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
7332 Hybrid Neural Network Methods for Lithology Identification in the Algerian Sahara

Authors: S. Chikhi, M. Batouche, H. Shout

Abstract:

In this paper, we combine a probabilistic neural method with radial-bias functions in order to construct the lithofacies of the wells DF01, DF02 and DF03 situated in the Triassic province of Algeria (Sahara). Lithofacies is a crucial problem in reservoir characterization. Our objective is to facilitate the experts' work in geological domain and to allow them to obtain quickly the structure and the nature of lands around the drilling. This study intends to design a tool that helps automatic deduction from numerical data. We used a probabilistic formalism to enhance the classification process initiated by a Self-Organized Map procedure. Our system gives lithofacies, from well-log data, of the concerned reservoir wells in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits.

Keywords: Classification, Lithofacies, Probabilistic formalism, Reservoir characterization, Well-log data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
7331 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
7330 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
7329 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: Cyclic loading, DEM, numerical modelling, sands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
7328 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
7327 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: Machine learning, user interface, user experience, Internet of things, health promotion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
7326 New Methods for E-Commerce Databases Designing in Semantic Web Systems (Modern Systems)

Authors: Karim Heidari, Serajodin Katebi, Ali Reza Mahdavi Far

Abstract:

The purpose of this paper is to study Database Models to use them efficiently in E-commerce websites. In this paper we are going to find a method which can save and retrieve information in Ecommerce websites. Thus, semantic web applications can work with, and we are also going to study different technologies of E-commerce databases and we know that one of the most important deficits in semantic web is the shortage of semantic data, since most of the information is still stored in relational databases, we present an approach to map legacy data stored in relational databases into the Semantic Web using virtually any modern RDF query language, as long as it is closed within RDF. To achieve this goal we study XML structures for relational data bases of old websites and eventually we will come up one level over XML and look for a map from relational model (RDM) to RDF. Noting that a large number of semantic webs get advantage of relational model, opening the ways which can be converted to XML and RDF in modern systems (semantic web) is important.

Keywords: E-Commerce, Semantic Web, Database, XML, RDF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
7325 Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model

Authors: Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, Zhang Li

Abstract:

The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.

Keywords: Data Quality Model, Information learnability, Information Quality, Web applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5798
7324 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
7323 Dynamic Decompression for Text Files

Authors: Ananth Kamath, Ankit Kant, Aravind Srivatsa, Harisha J.A

Abstract:

Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding, arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching (PPM), and Burrows-Wheeler Transform (BWT) based algorithms. Decompression is also required to retrieve the original data by lossless means. A compression scheme for text files coupled with the principle of dynamic decompression, which decompresses only the section of the compressed text file required by the user instead of decompressing the entire text file. Dynamic decompressed files offer better disk space utilization due to higher compression ratios compared to most of the currently available text file formats.

Keywords: Compression, Dynamic Decompression, Text file format, Portable Document Format, Compression Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
7322 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3588
7321 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3016
7320 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance

Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic

Abstract:

A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.

Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
7319 Groundwater Potential Zone Identification in Unconsolidated Aquifer Using Geophysical Techniques around Tarbela Ghazi, District Haripur, Pakistan

Authors: Syed Muzyan Shahzad, Liu Jianxin, Asim Shahzad, Muhammad Sharjeel Raza, Sun Ya, Fanidi Meryem

Abstract:

Electrical resistivity investigation was conducted in vicinity of Tarbela Ghazi, in order to study the subsurface layer with a view of determining the depth to the aquifer and thickness of groundwater potential zones. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at 16 VES stations. Well logging data at four tube wells have been used to mark the super saturated zones with great discharge rate. The present paper shows a geoelectrical identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance). The VES results revealed both homogeneous and heterogeneous nature of the subsurface strata. Aquifer is unconfined to confine in nature, and at few locations though perched aquifer has been identified, groundwater potential zones are developed in unconsolidated deposits layers and more than seven geo-electric layers are observed at some VES locations. Saturated zones thickness ranges from 5 m to 150 m, whereas at few area aquifer is beyond 150 m thick. The average anisotropy, transvers resistance and longitudinal conductance values are 0.86 %, 35750.9821 Ω.m2, 0.729 Siemens, respectively. The transverse unit resistance values fluctuate all over the aquifer system, whereas below at particular depth high values are observed, that significantly associated with the high transmissivity zones. The groundwater quality in all analyzed samples is below permissible limit according to World Health Standard (WHO).

Keywords: Geoelectric layers, Dar Zarrouk parameters, Aquifer, Electro-stratigraphic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
7318 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things

Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala

Abstract:

In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.

Keywords: Embedded computing, internet of things, mobile computing, and wireless technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
7317 Estimation Model for Concrete Slump Recovery by Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Keywords: Estimation model, second superplasticizer dosage, slump loss, slump recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
7316 Project Selection by Using Fuzzy AHP and TOPSIS Technique

Authors: S. Mahmoodzadeh, J. Shahrabi, M. Pariazar, M. S. Zaeri

Abstract:

In this article, by using fuzzy AHP and TOPSIS technique we propose a new method for project selection problem. After reviewing four common methods of comparing alternatives investment (net present value, rate of return, benefit cost analysis and payback period) we use them as criteria in AHP tree. In this methodology by utilizing improved Analytical Hierarchy Process by Fuzzy set theory, first we try to calculate weight of each criterion. Then by implementing TOPSIS algorithm, assessment of projects has been done. Obtained results have been tested in a numerical example.

Keywords: Fuzzy AHP, Project Selection, TOPSIS Technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6609