**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30077

##### Arc Length of Rational Bezier Curves and Use for CAD Reparametrization

**Authors:**
Maharavo Randrianarivony

**Abstract:**

**Keywords:**
Adaptivity,
Length,
Parametrization,
Rational Bezier

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1084742

**References:**

[1] G. Brunnett, "Geometric design with trimmed surfaces", Computing Supplementum, vol. 10, pp. 101-115, 1995.

[2] C. de Boor, A practical guide to splines, New York: Springer Verlag, 1978.

[3] G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Boston: Academic Press, 1997.

[4] O. Figueiredo, J. Reveilles and R. Hersch, "Digitization of B'ezier curves and patches using discrete geometry", in Proc. 8th Int. Conf. Discrete Geometry for Computer Imagery, Marne-la-Vall'ee, 1999, pp. 388-398.

[5] M. Floater, "Chordal cubic spline interpolation is fourth order accurate", IMA J. Numer. Anal., vol. 26, pp. 25-33, 2006.

[6] T. Hain, "Rapid termination evaluation for recursive subdivision of B'ezier curves", in: Proc. Int. Conf. on Image Science, Systems, and Technology, Las Vegas, 2002, pp. 323-328.

[7] H. Prautzsch, W. Boehm and M. Paluszny, B'ezier and B-Spline techniques, Berlin: Springer Verlag, 2002.

[8] M. Randrianarivony, "Geometric processing of CAD data and meshes as input of integral equation solvers". Ph.D. dissertation, Dept. Comput. Science, Chemnitz University of Technology, Chemnitz, Germany, 2006.

[9] M. Randrianarivony and G. Brunnett, "Molecular surface decomposition using geometric techniques", in Proc. Conf. Bildverarbeitung f┬¿ur die Medizine, Berlin, 2008, pp. 197-201.

[10] M. Randrianarivony and G. Brunnett, "Preparation of CAD and Molecular Surfaces for Meshfree Solvers", in Proc. Int. Workshop Meshfree Methods for PDE, Bonn, 2007, pp. 231-245.

[11] J. Roulier, "Specifying the arc length of B'ezier curves", Computer Aided Geometric Design, Vol. 10, pp. 25-56, 1993.

[12] H. Seidel, "Polar forms for geometrically continuous spline curves of arbitrary degree", ACM Trans. Graph., Vol. 12, pp. 1-34, 1993.

[13] M. Walter and A. Fournier, "Approximate arc length parametrization", in Proc. 9th Brazilian Symposium on Computer Graphics and Image Processing, Brazil, 1996, pp. 143-150