
 

 

  
Abstract—A dissimilarity measure between the empiric 

characteristic functions of the subsamples associated to the different 
classes in a multivariate data set is proposed. This measure can be 
efficiently computed, and it depends on all the cases of each class. It 
may be used to find groups of similar classes, which could be joined 
for further analysis, or it could be employed to perform an 
agglomerative hierarchical cluster analysis of the set of classes. The 
final tree can serve to build a family of binary classification models, 
offering an alternative approach to the multi-class SVM problem. We 
have tested this dendrogram based SVM approach with the one-
against-one SVM approach over four publicly available data sets, 
three of them being microarray data. Both performances have been 
found equivalent, but the first solution requires a smaller number of 
binary SVM models. 

 
Keywords—Cluster Analysis, Empiric Characteristic Function, 

Multi-class SVM, R. 

I. INTRODUCTION 

UPPORT VECTOR MACHINES (SVM) are a powerful 
family of supervised machine learning techniques. They 

emerged from Statistical Learning Theory, or Vapnik-
Chernovenkis theory [1]-[3] and several extensions were 
successively proposed. When used for a two-class 
classification problem where the set of binary labeled training 
patterns is linearly separable, the SVM separates both classes 
with a hyper-plane that is maximally distant from them (“the 
maximal margin hyper-plane”). If linear separation is not 
possible, the feature space is enlarged using basis expansions 
such as polynomials or splines. Moreover, explicit 
specification of this transformation is not necessary, as a 
kernel function that computes inner products in the 
transformed space can be employed. 

SVM and its variants have been successfully applied in 
many domains, for example in two-class classification of 
microarray data [4]-[6]. Bioinformatics data sets usually 
contain measurements for thousands of genes, which proves 
problematic for many traditional methods, while SVM are well 
suited to obtain classification models with such high 
dimensional data. 
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The extension of the binary SVM model to the multi-class 

scenario is still a research topic. In general it is 
computationally more expensive to solve a multi-class problem 
than a binary model with the same number of data. A usual 
approach is based on the construction of a set of binary SVM 
models. For example, the one-against-all method, (for example 
[7]) builds M binary SVM models for a problem with M 
classes, where the i-th model tries to separate the class i from 
the remaining categories. Thus, the classification rule for each 
model is based on the sign of a decision function mi(x). The 
final decision is based on the class which has the largest value 
of the decision functions m1(x),…,mM(x).  

Another approach is the one-against-one method, initially 
introduced in [8] for neural networks, where M(M-1)/2 models 
are obtained, one for each pair of classes, and a voting scheme 
provides the final decision.  

The directed acyclic graph SVM (DAGSVM) proposed in 
[9] uses a rooted binary directed acyclic graph which has 
internal nodes and leaves. Each node is a binary SVM of i-th 
and j-th classes. As it is explained in [10], given an input 
vector to be classified, starting at the root node, the binary 
decision function is evaluated. Then it moves to either left or 
right depending on the output value, finally reaching a leaf 
node which indicates the predicted class.  

The Dendrogram-based SVM model (DSVM) [11] is an 
alternative based on the previous realization of a hierarchical 
cluster analysis of the M classes. In each level of the 
dendrogram, a binary classification problem is formulated to 
separate two groups of classes. The final decision is computed 
by presenting the input vector to the set of M-1 SVM models 
in a tree decision form, until an assignation to a class is 
reached. However, the distance between classes is computed in 
[11] as the distance between the M gravity centers. It is well 
known that the arithmetic mean can be a bad representative of 
a distribution, for example when there exist outliers in the 
sample, or when asymmetric distributions are obtained. We 
propose a dissimilarity measure between the multivariate 
empiric characteristic functions of the M samples. It can be 
used to identify and group similar classes, or either it can serve 
to perform the cluster analysis of the classes. This measure is 
presented in section III. Previously, section II presents the 
SVM model as it is available in the R system. Section IV 
contains the application of this multi-class SVM approach to 
four public data sets. Finally, section V contains the main 
conclusions and future work.  
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II.  TWO-CLASS SVM MODEL 

We have fitted the SVM models in section IV with the svm 
function available in the library e1071 [12] of the R system 
[13], which offers an interface to the award-winning C++ 
implementation, LIBSVM, by Chan and Lin. For a binary 
problem, the data set is described by n training vectors {xi, yi}, 
i=1,2,…,n, where the p-dimensional vectors xi contain the 
predictor features and the n labels yi ∈{-1,1} identify the class 
of each vector. Among the several variants of SVM existing in 
the library e1071, we have used C-classification with the 
Radial Basis Kernel. The primary quadratic programming 
problem to be solved is: 
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C>0 is a parameter controlling the trade-off between margin 

and error. The dual problem is 
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where e is the n-vector of all ones, and R is a positive semi 

definite matrix defined by Rij=yiyjK(xi,xj), i,j=1,2,…,n, being 
K(xi,xj)=φ(xi)φ(xj) the kernel function. A vector x is classified 
by the decision function  
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depending on the margins 
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The Radial Basis Function (RBF) was our choice for K: 
 

( )2
exp),( vuvu −−= γK  (5) 

 
So, two parameters was tuned in the experiments described 

in section IV: C and γ. We adopted the suggestions of the 
authors of LIBSVM [14] about the definition of the search 
grid. Thus, our search for C included small and big values, 
while the explored values for γ have been selected around the 
default value of the svm function in the R library e1071, 
defined as 1/p, being p the number of predictors. This search 

was performed through a cross validation procedure with the 
tune.svm function also available in the library e1071.  

III.  A DISSIMILARITY MEASURE BETWEEN EMPIRIC 

CHARACTERISTIC FUNCTIONS 

Let X1,…,Xn be a multivariate sample from a p-dimensional 
continuous population, and let Fn be the empirical cumulative 
distribution function, defined by Fn(x)=N(x)/n, where N(x) is 
the number of Xj≤x. Following [15] the empiric characteristic 
function φ is defined for any p-dimensional real vector t as: 
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where t’ denotes the transpose of the column vector t. The 
empiric characteristic function has several important statistical 
properties [15]: it allows an easy characterization of 
independence and symmetry, it retains all the information 
existing in the sample and it can be efficiently computed. 
Thus, several inferential procedures based on this function 
have been proposed.  

Now we consider the M samples from the M populations 
appearing in the multi-class problem. Let G1,…,GM be the 
corresponding multivariate empirical distribution functions. 
Thus, the M multivariate empirical characteristic functions are 
defined as follows, for j=1,2,..,M, where Xj,r is the p-sized 
column vector corresponding to the r element of the nj sized 
sample j: 
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Fixed t, let dij(t)

1/2 the Euclidean distance between the row 
complex vectors associated to the values that i-th and j-th 
empiric functions take in t: 
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Then, it is easy to verify that 
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We now consider the orthonormal basis B of the p-euclidean 
space: 
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We define the following measure of dissimilarity between 

the i-th and j-th empiric characteristic functions, based on B, 
and therefore, between their corresponding classes: 
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Thus, a dissimilarity matrix D can be computed to measure 

the distances between the M classes, helping to clarify the 
existing relations between the different classes. For example, 
the two most dissimilar (or most similar) classes can be 
detected. Another possibility is to perform a cluster analysis to 
obtain a taxonomy of the M classes, and to build a set of M-1 
binary classification models. For a hierarchical cluster 
analysis, in each step the dissimilarities matrix must be 
recomputed. This can be easily implemented using the 
following tips. 

First, 
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So we have 
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with 
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Last vectors can be loaded in two matrices T and S: 
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When clusters i and j are joined, T and S are immediately 

updated by 
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TABLE I 
DISTANCES BETWEEN THE EMPIRIC CHARACTERISTIC FUNCTIONS FOR THE 

KHAN DATA SET 

 BL EW NB 

EW 207.4   

NB 209.5 133.1  
RM 229.8 95.4 119.0 

 
This way, the dissimilarity matrix can be efficiently 

actualized during the clustering process.  

IV. NUMERICAL EXPERIMENTS 

We have compared the multi-class dendrogram SVM model 
based on the previously defined dissimilarity matrix, which we 
will call DSVMC, and the one-against-one method. For each 
fitted SVM model,. a grid search for an appropriate 
configuration of C and γ (parameter of the radial basis kernel 
in the svm function) was realized by 10-fold cross-validation 
with the aid of the tune.svm function in the e1071 library in R.  

A. Khan data set 

This data set about the small, round blue cell tumors 
(SRBCTs) of childhood includes 63 samples classified as 
neuroblastoma (NB), rhabdomyosarcoma (RM), Burkitt 
lymphomas (BL) and the Ewing family of tumors (EW). 25 
test samples are also available. Data from the cDNA 
microarray experiment contains 2308 genes.  [16] used this 
data set, and it can be downloaded at the URL in [17], 
although we used the accompanying disk in [18]. The data was 
log transformed and normalized, and the 200 top genes 
according to p-values corresponding to the one-way ANOVA 
were selected. Table I contains the dissimilarity matrix 
between the four classes, based on the empiric characteristic 
functions, computed on the training data set.  

Fig. 1 displays the clustering process, and the three 
associated binary SVM models, denoted by M1, M2 and M3. 
Thus, given a case to be classified, its corresponding 200 gene 
expression values are the input to M1. If the decision of M1 is 
BL, that is the classification, otherwise, the case is entered into 
M2. If M2 says NB, this is the decision, otherwise M3 outputs 
a final classification. 

 
 

EW RMNBBL

M2

M1

M3

 
Fig. 1 Cluster analysis of the classes of Khan data set 
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The one-against-one SVM model was fitted on the 63 
training samples, and the estimated error rate on the test set 
was 0%. The DSVMC model also provided a zero test error 
rate. Therefore, both models provided equivalent and good 
performances, although DSVMC only needs three binary SVM 
models, while the usual one-against-one SVM approach 
requires six binary SVM models.  

B. DNA data set 

This primate splice-junction gene sequences data set 
consists of 3186 data points and 180 indicator binary 
variables. The problem is to recognize the 3 classes (ei, ie, 
neither), i.e., the boundaries between exons (the parts of the 
DNA sequence retained after splicing) and introns (the parts of 
the DNA sequence that are spliced out). We have used the 
available version in the mlbench library in R [19]. We must 
note that this data set has a dimensionality different to the 
typical microarray data sets, and therefore it can illustrate the 
performance of DSVMC for those situations. 50 random splits 
into training (2000 samples) and test sets (1186 samples) were 
performed.  

The 50 dendrograms were all equal, as it is presented in fig. 
2. M1 tries to separate ie class from ei and n clasess, while M2 
is designed to discriminate between ei and n. From the 50 
resulting M1 and M2 models, the obtained mean test error rate 
was 4.18% for DSVMC, while the one-against-one SVM 
model provided a slightly greater value of 4.36%. A paired 
two sample t-test for the null hypothesis of population means 
equality was realized, detecting a weak evidence in favor of 
DSVMC (p-value = 0.07197).  

Fig. 3 displays a box and whisker plot of the 50 differences 
between the test error rates for the SVM one-against-one 
model and the DSVMC method. 65% of the random splits 
provided a test DSVMC error rate lower than SVM one-
against-one. 

C. Nci data set 

This data set comprises the expression matrix of 6830 genes 
and 64 samples, for patients suffering a tumor. Eight types of 
tumor are present: NSCLC, OVARIAN, CNS, RENAL, 
COLON, LEUKEMIA, BREAST and MELANOMA. We 
used the nci data set available in the ElemStatLearn library in 
R [20]. A similar preprocessing as in Khan data set was 
performed, selecting the 200 top genes. 100 random splits into 
training (48 samples) and test sets (16 samples) were also 
performed.  

The 100 obtained dendrograms were very different, unlike 
DNA data set. The mean test error rate for DSVMC was 
21.66%, while one-against-one SVM provided 21.52%. A 
paired two sample t-test for the null hypothesis of population 
means equality was realized, accepting the equality (p-value = 
0.51) 

 
 
 
 
 

TABLE II 
MEAN VALUES OF DISTANCES BETWEEN THE EMPIRIC CHARACTERISTIC 

FUNCTIONS FOR THE VEHICLE DATA SET 

 BUS OPEL SAAB 

OPEL 1.17   

SAAB 1.22 0.22  
VAN 1.17 0.32 0.29 

 
The reduction in the number of binary models which 

DSVMC offers for this data set is very important, only 7 
models, while one-against-one needs 28 binary SVM models. 

 

ei nie

M1

M2

 
Fig. 2 Cluster analysis of the classes of DNA data set 

 
Fig. 3 Differences between the 50 test error rates for the DSVMC and 

one-against one SVM. DNA data set 

D. Vehicle data set 

This data set is available in the library mlbench of R [19]. 
The purpose is to classify a given silhouette as one of four 
types of vehicle, using a set of 18 features extracted from the 
silhouette.  

The 846 cases were randomly split into training (75%) and 
test (25%) sets. This random split was independently repeated 
100 times. Table II contains the mean values of D over the 100 
iterations.  

Fig. 4 shows the three binary SVM models resulting from 
the hierarquical agglomerative clustering process in 95 pf the 
100 splits. M1 is fitted to separate bus from the aggregated 
class {van, opel, saab}. M2 is designed to discriminate 
between van and {opel, saab}. M3 discriminates between opel 
and saab.  

The mean test error rate for DSVMC was 15.64%, while 
one-against-one SVM provided 16.03%. A paired two sample 
t-test for the null hypothesis of population means equality was 
again realized, accepting the equality (p-value = 0.52).  
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Again, the equivalent performance is accompanied by a 
lower number of models both in training and testing phases 
when using DSVMC, which at most requires three binary 
models, while one-against-one classification always needs the 
six binary models. 

 

 
Fig. 4 Cluster analysis of the classes of the Vehicle data set 

V. CONCLUSION 

A dissimilarity measure between the subsamples appearing 
in a multivariate dataset has been presented. It is based on the 
multivariate empiric characteristic functions, all the 
information existing in the sample is used, and it can be 
efficiently computed. This measure can be used to obtain a 
clustering description of the different subsamples. We have 
tested its use to derive a set of binary SVM models as an 
alternative inside the multi-class problem. The empirical 
results suggest a similar performance to the SVM one-against-
one but it only requires M-1 binary models for a problem with 
M classes. Future works could include other multi-class SVM 
approaches, the use of categorical variables and a wider 
empirical study. Other models, as logistic regression, could be 
fitted to obtain the set of binary classification models, defining 
an alternative approach to multinomial logistic regression. 
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