Search results for: image data.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8581

Search results for: image data.

6391 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
6390 Video-based Face Recognition: A Survey

Authors: Huafeng Wang, Yunhong Wang, Yuan Cao

Abstract:

During the past several years, face recognition in video has received significant attention. Not only the wide range of commercial and law enforcement applications, but also the availability of feasible technologies after several decades of research contributes to the trend. Although current face recognition systems have reached a certain level of maturity, their development is still limited by the conditions brought about by many real applications. For example, recognition images of video sequence acquired in an open environment with changes in illumination and/or pose and/or facial occlusion and/or low resolution of acquired image remains a largely unsolved problem. In other words, current algorithms are yet to be developed. This paper provides an up-to-date survey of video-based face recognition research. To present a comprehensive survey, we categorize existing video based recognition approaches and present detailed descriptions of representative methods within each category. In addition, relevant topics such as real time detection, real time tracking for video, issues such as illumination, pose, 3D and low resolution are covered.

Keywords: Face recognition, video-based, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121
6389 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis

Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma

Abstract:

A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.

Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68
6388 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
6387 Sustainable Urban Waterfronts Using Sustainability Assessment Rating System

Authors: R. M. R. Hussein

Abstract:

Sustainable urban waterfront development is one of the most interesting phenomena of urban renewal in the last decades. However, there are still many cities whose visual image is compromised due to the lack of a sustainable urban waterfront development, which consequently affects the place of those cities globally. This paper aims to reimagine the role of waterfront areas in city design, with a particular focus on Egypt, so that they provide attractive, sustainable urban environments while promoting the continued aesthetic development of the city overall. This aim will be achieved by determining the main principles of a sustainable urban waterfront and its applications. This paper concentrates on sustainability assessment rating systems. A number of international case-studies, wherein a city has applied the basic principles for a sustainable urban waterfront and have made use of sustainability assessment rating systems, have been selected as examples which can be applied to the urban waterfronts in Egypt. This paper establishes the importance of developing the design of urban environments in Egypt, as well as identifying the methods of sustainability application for urban waterfronts.

Keywords: Sustainable Urban Waterfront, Green Infrastructure, Energy Efficient, Cairo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3494
6386 A Meta-Analytic Path Analysis of e-Learning Acceptance Model

Authors: David W.S. Tai, Ren-Cheng Zhang, Sheng-Hung Chang, Chin-Pin Chen, Jia-Ling Chen

Abstract:

This study reports results of a meta-analytic path analysis e-learning Acceptance Model with k = 27 studies, Databases searched included Information Sciences Institute (ISI) website. Variables recorded included perceived usefulness, perceived ease of use, attitude toward behavior, and behavioral intention to use e-learning. A correlation matrix of these variables was derived from meta-analytic data and then analyzed by using structural path analysis to test the fitness of the e-learning acceptance model to the observed aggregated data. Results showed the revised hypothesized model to be a reasonable, good fit to aggregated data. Furthermore, discussions and implications are given in this article.

Keywords: E-learning, Meta Analytic Path Analysis, Technology Acceptance Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
6385 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato

Abstract:

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Keywords: Data mining, data science, trajectory, animal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
6384 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges

Authors: Dalvin D. Hill, Hector M. Castro Garcia

Abstract:

A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).

Keywords: Electronic health record, health information exchanges, Internet of Things, personal health records, wearable devices, wearables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
6383 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo

Authors: Miika Toivanen, Jouko Lampinen

Abstract:

This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.

Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
6382 Cooperative Data Caching in WSN

Authors: Narottam Chand

Abstract:

Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.

Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
6381 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: Kinetics, kinematics, cyclograms, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
6380 The Automated Selective Acquisition System

Authors: Atisthan Wuttimanop, Suchada Rianmora

Abstract:

To support design process for launching the product on time, reverse engineering (RE) process has been introduced for quickly generating 3D CAD model from its physical object. The accuracy of the 3D CAD model depends upon the data acquisition technique selected, contact or non-contact methods. In order to reduce times used for acquiring surface and eliminating noises, the automated selective acquisition system has been developed and presented in this research as the alternative channel for non-contact acquisition technique where the data is selectively and locally scanned contour by contour without performing data reduction process. The results present as the organized contour points which are directly used to generate 3D virtual model. The comparison between the proposed technique and another non-contact scanning technique has been presented and discussed.

Keywords: Automated selective acquisition system, Non-contact acquisition, Reverse engineering, 3D scanners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
6379 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface

Authors: Srijanani Anurag Prasad

Abstract:

The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprise a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.

Keywords: Fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
6378 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha

Abstract:

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
6377 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: Business intelligence, business intelligence capability, decision making, decision quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
6376 Producing Outdoor Design Conditions Based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The meteorological elements of outdoor design weather data are usually selected based on their excess frequency separately while the dependency between the elements is not well considered. It means that the simultaneous occurrence probability of these elements is smaller than the original excess frequency which may cause an overestimation of selecting air-conditioning capacity. Therefore, the copula approach which can capture the dependency between multivariate data was used to model the joint distributions of the meteorological elements, like air temperature and global solar radiation. We suggest a method based on the specific simultaneous occurrence probability of these two elements of selecting more credible outdoor design conditions. The hourly weather data at 12 noon from 2001 to 2010 in Tokyo, Japan are used to analyze the dependency structure and joint distribution, the Gaussian copula represents the dependence of data best. According to calculating the air temperature and global solar radiation in specific simultaneous occurrence probability and the common exceeding, the results show that both the air temperature and global solar radiation based on simultaneous occurrence probability are lower than these based on the conventional method in the same probability.

Keywords: Copula approach, Design weather database, energy conservation, HVAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
6375 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

Authors: Chien-Hua Wang, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
6374 Segmentation and Recognition of Handwritten Numeric Chains

Authors: Salim Ouchtati, Bedda Mouldi, Abderrazak Lachouri

Abstract:

In this paper we present an off line system for the recognition of the handwritten numeric chains. Our work is divided in two big parts. The first part is the realization of a recognition system of the isolated handwritten digits. In this case the study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the digits by several methods: the distribution sequence, the Barr features and the centred moments of the different projections and profiles. The second part is the extension of our system for the reading of the handwritten numeric chains constituted of a variable number of digits. The vertical projection is used to segment the numeric chain at isolated digits and every digit (or segment) will be presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits). The result of the recognition of the numeric chain will be displayed at the exit of the global system.

Keywords: Optical Characters Recognition, Neural networks, Barr features, Image processing, Pattern Recognition, Featuresextraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
6373 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution

Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani S. Alghamdi

Abstract:

Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.

Keywords: Binary segmentation, change point, exponential Lomax distribution, information criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
6372 Identification of High Stress and Strain Regions in Proximal Femur during Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: H. Kheirollahi, Y. Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: Finite element analysis, hip fracture, strain, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
6371 Two-Phase Optimization for Selecting Materialized Views in a Data Warehouse

Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul

Abstract:

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance. Therefore, in this paper, we introduce a new approach aimed to solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that 2PO outperform the original algorithms in terms of query processing cost and view maintenance cost.

Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
6370 Stakeholder Analysis of Agricultural Drone Policy: A Case Study of the Agricultural Drone Ecosystem of Thailand

Authors: Thanomsin Chakreeves, Atichat Preittigun, Ajchara Phu-ang

Abstract:

This paper presents a stakeholder analysis of agricultural drone policies that meet the government's goal of building an agricultural drone ecosystem in Thailand. Firstly, case studies from other countries are reviewed. The stakeholder analysis method and qualitative data from the interviews are then presented including data from the Institute of Innovation and Management, the Office of National Higher Education Science Research and Innovation Policy Council, agricultural entrepreneurs and farmers. Study and interview data are then employed to describe the current ecosystem and to guide the implementation of agricultural drone policies that are suitable for the ecosystem of Thailand. Finally, policy recommendations are then made that the Thai government should adopt in the future.

Keywords: Drone public policy, drone ecosystem, policy development, agricultural drone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
6369 Study and Analysis of Optical Intersatellite Links

Authors: Boudene Maamar, Xu Mai

Abstract:

Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.

Keywords: Optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
6368 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: Diabetic retinopathy, fundus, CHT, exudates, hemorrhages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
6367 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach

Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon

Abstract:

In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.

Keywords: Feature, intensity, contour, hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
6366 An Optical Flow Based Segmentation Method for Objects Extraction

Authors: C. Lodato, S. Lopes

Abstract:

This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
6365 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison

Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser

Abstract:

The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
6364 Parallelization of Ensemble Kalman Filter (EnKF) for Oil Reservoirs with Time-lapse Seismic Data

Authors: Md Khairullah, Hai-Xiang Lin, Remus G. Hanea, Arnold W. Heemink

Abstract:

In this paper we describe the design and implementation of a parallel algorithm for data assimilation with ensemble Kalman filter (EnKF) for oil reservoir history matching problem. The use of large number of observations from time-lapse seismic leads to a large turnaround time for the analysis step, in addition to the time consuming simulations of the realizations. For efficient parallelization it is important to consider parallel computation at the analysis step. Our experiments show that parallelization of the analysis step in addition to the forecast step has good scalability, exploiting the same set of resources with some additional efforts.

Keywords: EnKF, Data assimilation, Parallel computing, Parallel efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
6363 Information Security in E-Learning through Identification of Humans

Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour

Abstract:

During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.

Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
6362 Bandwidth Allocation for ABR Service in Cellular Networks

Authors: Khaja Kamaluddin, Muhammed Yousoof

Abstract:

Available Bit Rate Service (ABR) is the lower priority service and the better service for the transmission of data. On wireline ATM networks ABR source is always getting the feedback from switches about increase or decrease of bandwidth according to the changing network conditions and minimum bandwidth is guaranteed. In wireless networks guaranteeing the minimum bandwidth is really a challenging task as the source is always in mobile and traveling from one cell to another cell. Re establishment of virtual circuits from start to end every time causes the delay in transmission. In our proposed solution we proposed the mechanism to provide more available bandwidth to the ABR source by re-usage of part of old Virtual Channels and establishing the new ones. We want the ABR source to transmit the data continuously (non-stop) inorderto avoid the delay. In worst case scenario at least minimum bandwidth is to be allocated. In order to keep the data flow continuously, priority is given to the handoff ABR call against new ABR call.

Keywords: Bandwidth allocation, Virtual Channel (VC), CBR, ABR, MCR and QOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600