Search results for: spectroscopy of electron energy losses.
1616 Preparation of Nanostructure ZnO-SnO2 Thin Films for Optoelectronic Properties and Post Annealing Influence
Authors: Vipin Kumar Jain, Praveen Kumar, Y.K. Vijay
Abstract:
ZnO-SnO2 i.e. Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2 - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO film were annealed at 450 0C in vacuum. These films were characterized to study the effect of annealing on the structural, electrical, and optical properties. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) images manifest the surface morphology of these ZTO thin films. The apparent growth of surface features revealed the formation of nanostructure ZTO thin films. The small value of surface roughness (root mean square RRMS) ensures the usefulness in optical coatings. The sheet resistance was also found to be decreased for both types of films with increasing concentration of SnO2. The optical transmittance found to be decreased however blue shift has been observed after annealing.Keywords: ZTO thin film, AFM, SEM, Optical transmittance, Sheet resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24081615 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-ε models such as standard, RNG and Realizable k-ε model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity.Keywords: Mixed convection, Lid-driven cavity, Turbulent flow, RANS model, URANS model, Large eddy simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22751614 A Single-Phase Register File with Complementary Pass-Transistor Adiabatic Logic
Authors: Jianping Hu, Xiaolei Sheng
Abstract:
This paper introduces an adiabatic register file based on two-phase CPAL (Complementary Pass-Transistor Adiabatic Logic circuits) with power-gating scheme, which can operate on a single-phase power clock. A 32×32 single-phase adiabatic register file with power-gating scheme has been implemented with TSMC 0.18μm CMOS technology. All the circuits except for the storage cells employ two-phase CPAL circuits, and the storage cell is based on the conventional memory one. The two-phase non-overlap power-clock generator with power-gating scheme is used to supply the proposed adiabatic register file. Full-custom layouts are drawn. The energy and functional simulations have been performed using the net-list extracted from their layouts. Compared with the traditional static CMOS register file, HSPICE simulations show that the proposed adiabatic register file can work very well, and it attains about 73% energy savings at 100 MHz.Keywords: Low power, Register file, Complementarypass-transistor logic, Adiabatic logic, Single-phase power clock.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651613 Complex Network Approach to International Trade of Fossil Fuel
Authors: Semanur Soyyiğit Kaya, Ercan Eren
Abstract:
Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weaknesses and strength of the system. On the other side, international trade is one of the fields that are analyzed as a complex network via network analysis. Complex network is one of the tools to analyze complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network, countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex networks such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed via Kolmogorov-Smirnov test. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to the data. As a result, impacts of the trading countries have been presented in terms of high-degree indicators.Keywords: Complex network approach, fossil fuel, international trade, network theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23861612 Adsorption of Reactive Dye Using Entrapped nZVI
Authors: P. Gomathi Priya, M. E. Thenmozhi
Abstract:
Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.
Keywords: Ammonium ferrous sulfate solution, barium (Ba)- alginate beads, reactive black WNN dye, zero valent iron nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7911611 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis
Authors: Mustafa Jaradat
Abstract:
Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.
Keywords: Air conditioning, dehumidification, desiccant, lithium chloride, tube bundle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5781610 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply
Authors: A. R. Malekpour, A.R. Seifi
Abstract:
This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.
Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17391609 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya
Authors: El-Sadek H. Nour El-deen, K. Harby
Abstract:
Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.
Keywords: Adsorption, solar energy, environment, cooling, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12071608 High Strain Rate Characteristics of the Advanced Blast Energy Absorbers
Authors: Martina Drdlová, Michal Frank, Jaroslav Buchar, Josef Krátký
Abstract:
The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. Several cellular materials are widely used as core of the sandwich structures and their properties influence the response of the entire element under impact load. To optimize their performance requires the characterisation of the core material behaviour at high strain rates and identification of the underlying mechanism. This work presents the study of high strain-rate characteristics of a specific porous lightweight blast energy absorbing foam using a Split Hopkinson Pressure Bar (SHPB) technique adapted to perform tests on low strength materials. Two different velocities, 15 and 30 m.s-1 were used to determine the strain sensitivity of the material. Foams were designed using two types of porous lightweight spherical raw materials with diameters of 30- 100 *m, combined with polymer matrix. Cylindrical specimens with diameter of 15 mm and length of 7 mm were prepared and loaded using a Split Hopkinson Pressure Bar apparatus to assess the relation between the composition of the material and its shock wave attenuation capacity.
Keywords: Blast, foam, microsphere, resin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841607 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests
Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani
Abstract:
Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.
Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12811606 Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride
Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel
Abstract:
The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (ΔGex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.
Keywords: Adiphenine hydrochloride, Critical micelle concentration, Interaction parameter, Activity coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20291605 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle
Authors: Rasikh Tariq, Fatima Z. Benarab
Abstract:
Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported. Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.
Keywords: Renewable energy, indirect evaporative cooling, Maisotsenko cycle, HMX, mathematical model, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12791604 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses
Authors: A. Azuraida, M. K. Halimah, C. A. C. Azurahanim, M. Ishak
Abstract:
The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different composition [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defect in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give smallest Eg and show less changes in FTIR spectra after gamma irradiation which indicate that this glass is more resistant to gamma radiation compared to other glasses.Keywords: Boro-Tellurite, bismuth, gamma radiation, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23181603 Morphological and Dynamic Mechanical Analyses of a Local Clay/Plantain Fiber Filled Hybrid Polystyrene Composites
Authors: K. P. Odimayomi, A. G. Adeniyi, S. A. Abdulkareem, F. M. Oladipo Emmanuel, C. A. Adeyanju, M. A Amoloye
Abstract:
The abundant availability of the local clay/plantain fiber coupled with the various renewable and sustainability advantages has led to their choice as co-fillers in the development of a hybrid polystyrene composite. The prime objective of this study is to evaluate the morphological and dynamic mechanical properties using Scanning Electron Microscopy and Dynamic Mechanical Analysis. The hybrid polystyrene composite development was developed via the hand-lay-up method. All processing including the constituent mixing and curing were achieved at room temperature (25 ± 2 ℃). The mechanical characteristics of the developed composites via Dynamic Mechanical Analysis (DMA) confirm an indirect relationship between time and storage modulus, this pattern becomes more evident at higher frequencies. It is clearly portrayed that the addition of clay and plantain fiber in the polystyrene matrix increases the stiffness of the developed composite.
Keywords: Morphology, DMA, Akerebiata clay, plantain fiber, hybrid polystyrene composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521602 Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester
Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.
Keywords: Internal damping coefficient, external damping coefficient, Euler-Bernoulli, energy harvester, Galfenol, magnetostrictive, response surface method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7631601 Synthesis of Aragonite Superstructure from Steelmaking Slag via Indirect CO2 Mineral Sequestration
Authors: Weijun Bao, Huiquan Li
Abstract:
Using steelmaking slag as a raw material, aragonite superstructure product had been synthesized via an indirect CO2 mineral sequestration rout. It mainly involved two separate steps, in which the element of calcium is first selectively leached from steelmaking slag by a novel leaching media consisting of organic solvent Tributyl phosphate (TBP), acetic acid, and ultra-purity water, followed by enhanced carbonation in a separate step for aragonite superstructure production as well as efficiency recovery of leaching media. Based on the different leaching medium employed in the steelmaking slag leaching process, two typical products were collected from the enhanced carbonation step. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. It reveals that the needle-like aragonite crystals self-organized into aragonite superstructure particles including aragonite microspheres as well as dumbbell-like spherical particles, can be obtained from the steelmaking slag with the purity over 99%.
Keywords: Aragonite superstructure, Steelmaking slag, Indirect CO2 mineral sequestration, Selective leaching, Enhanced carbonation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20771600 Genetic-Based Multi Resolution Noisy Color Image Segmentation
Authors: Raghad Jawad Ahmed
Abstract:
Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771599 The IVAIRE Study: Relative Performance of Energy and Heat Recovery Ventilators in Cold Climates
Authors: D. Aubin, D. Won, H. Schleibinger, P. Lajoie, D. Gauvin, J.-M. Leclerc
Abstract:
This paper describes the results obtained in a two-year randomized intervention field study investigating the impact of ventilation rates on indoor air quality (IAQ) and the respiratory health of asthmatic children in Québec City, Canada. The focus of this article is on the comparative effectiveness of heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) at increasing ventilation rates, improving IAQ, and maintaining an acceptable indoor relative humidity (RH). In 14% of the homes, the RH was found to be too low in winter. Providing more cold and dry outside air to under-ventilated homes in winter further reduces indoor RH. Thus, low-RH homes in the intervention group were chosen to receive ERVs (instead of HRVs) to increase the ventilation rate. The installation of HRVs or ERVs led to a near doubling of the ventilation rates in the intervention group homes which led to a significant reduction in the concentration of several key of pollutants. The ERVs were also effective in maintaining an acceptable indoor RH since they avoided excessive dehumidification of the home by recovering moisture from the exhaust airstream through the enthalpy core, otherwise associated with increased cold supply air rates.Keywords: Asthma, field study, indoor air quality, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7461598 Structural Characteristics of Batch Processed Agro-Waste Fibres
Authors: E. I. Akpan, S. O. Adeosun, G. I. Lawal, S. A. Balogun, X. D. Chen
Abstract:
The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.
Keywords: X-ray diffraction, SEM, cellulose, deconvolution, crystallinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27311597 Tumble Flow Analysis in an Unfired Engine Using Particle Image Velocimetry
Authors: B. Murali Krishna, J. M. Mallikarjuna
Abstract:
This paper deals with the experimental investigations of the in-cylinder tumble flows in an unfired internal combustion engine with a flat piston at the engine speeds ranging from 400 to 1000 rev/min., and also with the dome and dome-cavity pistons at an engine speed of 1000 rev/min., using particle image velocimetry. From the two-dimensional in-cylinder flow measurements, tumble flow analysis is carried out in the combustion space on a vertical plane passing through cylinder axis. To analyze the tumble flows, ensemble average velocity vectors are used and to characterize it, tumble ratio is estimated. From the results, generally, we have found that tumble ratio varies mainly with crank angle position. Also, at the end of compression stroke, average turbulent kinetic energy is more at higher engine speeds. We have also found that, at 330 crank angle position, flat piston shows an improvement of about 85 and 23% in tumble ratio, and about 24 and 2.5% in average turbulent kinetic energy compared to dome and dome-cavity pistons respectivelyKeywords: In-cylinder flow, Dome piston, Cavity, Tumble, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22811596 Deformation of Metallic Foams with Closed Cell at High Temperatures
Authors: Emrah Ersoy, Yusuf Özçatalbas
Abstract:
The aim of this study is to investigate formability of Al based closed cell metallic foams at high temperature. The foam specimens with rectangular section were produced from AlMg1Si0.6TiH20.8 alloy preform material. Bending and free bending tests based on gravity effect were applied to foam specimens at high temperatures. During the tests, the time-angular deformation relationships with various temperatures were determined. Deformation types formed in cell walls were investigated by means of Scanning Electron Microscopy (SEM) and optical microscopy. Bending deformation about 90° was achieved without any defect at high temperatures. The importance of a critical temperature and deformation rate was emphasized in maintaining the deformation. Significant slip lines on surface of cell walls at tensile zones of bending specimen were observed. At high strain rates, the microcrack formation in boundaries of elongated grains was determined.Keywords: Al alloy, Closed cell, hot deformation, metallic foam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21801595 Atmospheric Fluid Bed Gasification of Different Biomass Fuels
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper shortly describes various types of biomass and a growing number of facilities utilizing the biomass in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequently used types of biomass and results of their gasification testing. Sixteen most used "Czech" woody plants and grasses were selected; raw, element and biochemical analyses were performed and basic calorimetric values, ash composition, and ash characteristic temperatures were identified. Later, each biofuel was tested in a fluidized bed gasifier. The essential part of this paper provides results of the gasification of selected biomass types. Operating conditions are described in detail with a focus on individual fuels properties. Gas composition and impurities content are also identified. In terms of operating conditions and gas quality, the essential difference occurred mainly between woody plants and grasses. The woody plants were evaluated as more suitable fuels for fluidized bed gasifiers. Testing results significantly help with a decision-making process regarding suitability of energy plants for growing and with a selection of optimal biomass-treatment technology.
Keywords: Biomass Growing, Biomass Types, Gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231594 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.
Keywords: Clean energy, Cu-Cl cycle, heat transfer, sustainable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571593 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks
Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi
Abstract:
Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.
Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571592 Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper
Authors: F. Al-Mufadi, F. Djavanroodi
Abstract:
Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools.
For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens.
Keywords: SPD, ECAP, Pure Cu, Impact property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28371591 Microscopic Analysis of Welded Dental Alloys
Authors: S. Porojan, L. Sandu, F. Topalâ
Abstract:
Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231590 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: Water wave, model, wells turbine, MATLAB program, results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11801589 Real Time Approach for Data Placement in Wireless Sensor Networks
Authors: Sanjeev Gupta, Mayank Dave
Abstract:
The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.
Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141588 Optical Heterodyning of Injection-Locked Laser Sources — A Novel Technique for Millimeter-Wave Signal Generation
Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha
Abstract:
A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.
Keywords: FM sideband injection locking, Master-Slave injection locking, Millimetre-wave signal generation and Optical heterodyning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19811587 Modeling Decentralized Source-Separation Systems for Urban Waste Management
Authors: Bernard J.H. Ng, Apostolos Giannis, Victor Chang, Rainer Stegmann, Jing-Yuan Wang
Abstract:
Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.
Keywords: Decentralization, ecological sanitation, material flow analysis, source-separation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925