Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride
Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel
Abstract:
The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (ΔGex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.
Keywords: Adiphenine hydrochloride, Critical micelle concentration, Interaction parameter, Activity coefficient.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100072
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027References:
[1] A. Rodriguez, E. Junquera, P. del Burgo, E. Aicart, “Conductometric and spectrofluorimetric characterization of the mixed micelles constituted by dodecyltrimethylammonium bromide and a tricyclic antidepressant drug in aqueous solution,” J. Colloid Interface Sci., vol. 269, pp. 476-483, Jan. 2004.
[2] A. A. McLachlan, D. G. Marangoni, “Interactions between zwitterionic and conventional anionic and cationic surfactants,” J. Colloid Interface Sci., vol. 295, pp. 243-248, March 2006.
[3] M. D. Fernandez-Leyes, P. V. Messina, P. C. Schulz, “Aqueous sodium dehydrocholate–sodium deoxycholate mixtures at low concentration,” J. Colloid Interface Sci., vol. 314, pp. 659-664, Oct. 2007.
[4] J. Hu, L. Zhou, J. Feng, H. Liu, Y. Hu, “Nonideal mixed micelles of Gemini surfactant homologues and their application as templates for mesoporous material MCM-48,” J. Colloid Interface Sci., vol. 315, pp. 761-767, Nov. 2007.
[5] H. Matsubara, T. Nakano, T. Matsuda, T. Takiue, M. Aratono, “Effects of Alkyl Chain Length on Synergetic Adsorption and Micelle Formation in Homologous Cationic Surfactant Mixtures,” Langmuir, vol. 21, pp. 8131-8137, Jul. 2005.
[6] C. A. Lipinski, Curr. Drug Disc. (2001) 17-19.
[7] C. A. Lipinski, Am. Pharm. Rev. 5 (2002) 82-85.
[8] Y. Barenholz, “Liposome application: problems and prospects,” Curr. Opin. Colloid Interface Sci., vol. 6, pp. 66-77, Feb. 2001.
[9] M. M. Akers, “Excipient–drug interactions in parenteral formulations,” J. Pharm. Sci., vol. 91, pp. 2283-2300, Jul. 2002.
[10] B. E. Rabinow, “Nanosuspensions in drug delivery,” Nat. Rev. Drug Discovery., vol. 3, pp. 785-796, Sep. 2004.
[11] M. J. Lawrence, G.D. Rees, “Microemulsion-based media as novel drug delivery systems,” Adv. Drug Delivery Rev., vol. 45, pp. 89-121, Dec. 2000.
[12] M. Nakano, “Places of emulsions in drug delivery,” Adv. Drug Delivery Rev., vol. 45, pp. 1-4, Dec. 2000.
[13] Kabir-ud-Din, G. A. Al-dahbali, A. Z. Naqvi, M. Akram, “Surface and Solution Properties of Amphiphilic Drug-Nonionic Surfactant Systems” J Surfact Deterg, vol. 15, pp. 777–786, Apr. 2012.
[14] M.J. Earle, J.M.S.S. Esperanc, M.A. Gilea, J.N.C. Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, “The distillation and volatility of ionic liquids,” Nature, vol. 439, pp. 831–834, Feb. 2006.
[15] Y.U. Paulechka, D.H. Zaitsau, G.J. Kabo, A.A. Strechan, “Vapor pressure and thermal stability of ionic liquid 1-butyl-3- methylimidazolium Bis (trifluoromethylsulfonyl) amide,” Thermochim. Acta, vol. 439, pp. 158–160, Dec. 2005.
[16] L.P.N. Rebelo, J.N.C. Lopes, J.M.S.S. Esperanc, E. Filipe, “On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids,” J. Phys. Chem. B, vol. 109, pp. 6040–6043, Mar. 2005.
[17] C. Lagrost, D. Carrie, M. Vaultier, P. Hapiot, “Reactivities of Some Electrogenerated Organic Cation Radicals in Room-Temperature Ionic Liquids: Toward an Alternative to Volatile Organic Solvents?,” J. Phys. Chem. A, vol. 107, pp.745–752, Jan. 2003.
[18] A.M. Scurto, S.N.V.K. Aki, J.F. Brennecke, “Carbon dioxide induced separation of ionic liquids and water,” Chem. Commun., pp. 572–573, Jan. 2003.
[19] J.L. Anderson, V. Pino, E.C. Hagberg, V.V. Sheares, D.W. Armstrong, “Surfactant solvation effects and micelle formation in ionic liquids,” Chem. Commun., pp. 2444–2445, Aug. 2003.
[20] K.A. Fletcher, S. Pandey, “Surfactant Aggregation within Room- Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide,” Langmuir, vol. 20, pp. 33–36, Nov. 2004.
[21] C. Patrascu, F. Gauffre, F. Nallet, R. Bordes, J. Oberdisse, N. de Lauth- Viguerie, C. Mingotaud, Chem. Phys. 7 (2006) 99–101.
[22] J. Tang, D. Li, C. Sun, L. Zheng, J. Li, “Temperature dependant selfassembly of surfactant Brij 76 in room temperature ionic liquid,” Colloids Surf. A, vol. 273, pp. 24–28, Feb. 2006.
[23] A.E. Visser, R.P. Swatloski,W.M. Reichert, R. Mayton, S. Sheff, J.A.Wierzbicki, H. Davis Jr., R.D. Rogers, “Task-specific ionic liquids for the extraction of metal ions from aqueous solutions,” Chem. Commun., pp. 135–136, Nov.2001.
[24] G.T. Wei, Z. Yang, C.Y. Lee, H.Y. Yang, C.R.C. Wang, “Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid,” J. Am. Chem. Soc., vol. 126 pp. 5036–5037, Apr. 2004.
[25] Kabir-ud-Din, A.B. Khan, A.Z. Naqvi, “Mixed micellization of antidepressant drug amitriptyline hydrochloride with cationic surfactants,” Colloids Surf. B., vol. 80, pp. 206-212 Oct. 2010.
[26] Kabir-ud-Din, A.B. Khan, A.Z. Naqvi, “Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium,” Acta Phys. Chim. Sin., vol. 27, pp. 1900-1906, Jun. 2011.
[27] Kabir-ud-Din, A.B. Khan, A.Z. Naqvi, “Mixed Micellization and Interfacial Properties of Nonionic Surfactants with the Phenothiazine Drug Promazine Hydrochloride at 30°C,” J. Solution Chem., vol. 41, pp. 1587-1599, Oct. 2012.
[28] Kabir-ud-Din, M.A. Rub, A.Z. Naqvi, “Mixed Micelle Formation between Amphiphilic Drug Amitriptyline Hydrochloride and Surfactants (Conventional and Gemini) at 293.15-308.15 K,” J. Phys. Chem. B, vol. 114, pp. 6354–6364, Apr. 2010.
[29] Kabir-ud-Din, A.B.Khan, A.Z. Naqvi, “A study of the interaction between a phenothiazine drug promazine hydrochloride with cationic surfactants,” J. Mol. Liquids, vol. 187, pp. 374-380, Nov. 2013.
[30] T. Inoue, H. Yamakawa, “Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: Surfactant chain length dependence of the critical micelle concentration,” J. Colloid Interface Sci., vol. 356, pp. 798-802, Apr. 2011.
[31] J. Bowers, C.P.Butts, P.J. Martin, M.C. Vergara-Gutierrez, “Aggregation Behavior of Aqueous Solutions of Ionic Liquids,” Langmuir, vol. 20, pp. 2191-2198, Feb. 2004.
[32] P.D. Galgano, O.A. El Seoud, “Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison with structurally related surfactants,” J. Colloid Interface Sci., vol. 361, pp. 186-194, Sep. 2011.
[33] S. Mahajan, R. Sharma, R.K. Mahajan, “An Investigation of Drug Binding Ability of a Surface Active Ionic Liquid: Micellization, Electrochemical, and Spectroscopic Studies,” Langmuir, vol. 28, pp. 17238-17246, Nov. 2012.
[34] A.B. Khan, M. Ali, N.A. Malik, A. Ali, R. Patel, “Role of 1-methyl-3- octylimidazolium chloride in the micellization behavior of amphiphilic drug amitriptyline hydrochloride,” Colloids Surf. B, vol. 112, pp. 460- 465, Dec. 2013.
[35] G.C. Kresheck, in: F. Franks (Ed.), Water, vol. 4, Plenum, New York, 1975.
[36] K. Menguro, Y. Takasawa, N. Kawahashi, Y. Tabata, M. Ueno, “Micellar properties of a series of octaethyleneglycol-n-alkyl ethers with homogeneous ethylene oxide chain and their temperature dependence,” J. Colloid Interface Sci., vol. 83, pp. 50–56, Sep. 1981.
[37] C.C. Ruiz, L. Diaz-Lopez, J. Aguiar, “Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: A thermodynamic and structural study,” J. Colloid Interface Sci., Vol. 305, pp. 293–300, Jan. 2007.
[38] C. Das, B. Das, “Thermodynamic and Interfacial Adsorption Studies on the Micellar Solutions of Alkyltrimethylammonium Bromides in Ethylene Glycol (1) + Water (2) Mixed Solvent Media,” J. Chem. Eng. Data, vol. 54, pp. 559–565, Dec. 2009.
[39] D.K. Chattoraj, K.S. Birdi, Adsorption and the Gibbs Surface Excess, Plenum,New York, 1984.
[40] K. Anand, O.P. Yadav, P.P. Singh, “Studies on the surface and thermodynamic properties of some surfactants in aqueous and water+1,4-dioxane solutions,” Colloid Surf., vol. 55, pp. 345-358, 1991.
[41] J.H. Clint, J. Chem. Soc., Perkin Trans. 1 71 (1975) 1327–1334.
[42] D.N. Rubingh, in: K.L. Mittal (Ed.), Solution Chemistry of Surfactants, Plenum, New York, 1979, p. 337.
[43] D.G. Hall, “Electrostatic effects in dilute solutions containing charged colloidal entities,” J. Chem. Soc., Faraday Trans., vol. 87, pp. 3529- 3535, 1991.
[44] M.J. Rosen, “Synergism in mixtures containing zwitterionic surfactants,” Langmuir, vol. 7, pp. 885-888, May 1991.
[45] Q. Zhou, M.J. Rosen, “Molecular Interactions of Surfactants in Mixed Monolayers at the Air/Aqueous Solution Interface and in Mixed Micelles in Aqueous Media: The Regular Solution Approach,” Langmuir, vol. 19, pp. 4555-4562, Apr. 2003.
[46] M.J. Rosen, Surfactants and Interfacial Phenomenon, 3rd ed., Wiley- Interscience, New York, 2004.