Search results for: spherically symmetric space times.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2486

Search results for: spherically symmetric space times.

386 Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia

Authors: David Calderón Villegas, Thomas Kalitzky

Abstract:

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate. 

Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, financial analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
385 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength

Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain

Abstract:

Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.

Keywords: Processed films, polyvinyl alcohol, spectroscopy, surface morphology, templated polyanilines, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
384 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System

Authors: Vincent Alexander, Rizkita Esyanti

Abstract:

Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.

Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
383 Feature Based Dense Stereo Matching using Dynamic Programming and Color

Authors: Hajar Sadeghi, Payman Moallem, S. Amirhassn Monadjemi

Abstract:

This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.

Keywords: Chain Correspondence, Color Stereo Matching, Dynamic Programming, Epipolar Line, Stereo Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
382 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini

Abstract:

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
381 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
380 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: Steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
379 Creating a Profound Sense of Comfort to Stimulate Workers’ Innovation and Productivity: Exploring Research and Case Study Applications

Authors: Rana Bazaid, Debajyoti Pati

Abstract:

Purpose: The aim of this research is to explore and discuss innovation-workspaces, and how the design of the workspace has the potential to boost the work process and encourage employees’ satisfaction, leading to inventive and creative results. Background: The relationship between the workers and the work environment has a strong potential to enhance work outcomes when optimized for work goals. Innovation-work environment can benefit employees’ satisfaction, health, and performance. To understand this complex relationship, this research explores innovation-work environments. Methods: A review of 26 peer-reviewed articles, seven books, and 23 companies’ websites was conducted; in addition, five case studies were analyzed to deduce appropriate examples for the study. Results: The research found all successful five innovation environments focused on two aspects: first, workers’ satisfaction and comfort, which includes a focus on physical, functional, and psychological comfort; second aspect, all five centers were diverse work environments that addressed workers’ needs, design for individuals and teamwork, design for workers’ freedom, and design for increasing interaction. Conclusion: understanding individuals' needs and creating work environments that enhance interaction between workers and with the space are key aspects of successful innovation-work environments.

Keywords: Innovation-workspace, productivity, work environment, workers’ satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
378 Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

Authors: Jagadish H. Pujar, S. F. Kodad

Abstract:

Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.

Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
377 Development of Reliable Web-Based Laboratories for Developing Countries

Authors: Teyana S. Sapula, Damian D. Haule

Abstract:

In online context, the design and implementation of effective remote laboratories environment is highly challenging on account of hardware and software needs. This paper presents the remote laboratory software framework modified from ilab shared architecture (ISA). The ISA is a framework which enables students to remotely acccess and control experimental hardware using internet infrastructure. The need for remote laboratories came after experiencing problems imposed by traditional laboratories. Among them are: the high cost of laboratory equipment, scarcity of space, scarcity of technical personnel along with the restricted university budget creates a significant bottleneck on building required laboratory experiments. The solution to these problems is to build web-accessible laboratories. Remote laboratories allow students and educators to interact with real laboratory equipment located anywhere in the world at anytime. Recently, many universities and other educational institutions especially in third world countries rely on simulations because they do not afford the experimental equipment they require to their students. Remote laboratories enable users to get real data from real-time hand-on experiments. To implement many remote laboratories, the system architecture should be flexible, understandable and easy to implement, so that different laboratories with different hardware can be deployed easily. The modifications were made to enable developers to add more equipment in ISA framework and to attract the new developers to develop many online laboratories.

Keywords: Batched, ISA, labserver, servicebroker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
376 Two Scenarios for Ultra-Light Overhead Conveyor System in Logistics Applications

Authors: Batin Latif Aylak, Bernd Noche

Abstract:

Overhead conveyor systems are in use in many installations around the world, meeting the widest range of applications possible. Overhead conveyor systems are particularly preferred in automotive industry but also at post offices. Overhead conveyor systems must always be integrated with a logistical process by finding the best way for a cheaper material flow in order to guarantee precise and fast workflows. With their help, any transport can take place without wasting ground and space, without excessive company capacity, lost or damaged products, erroneous delivery, endless travels and without wasting time. Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. Crossings are realized by switches. Ultra-light overhead conveyor systems provide optimal material flow, which produces profit and saves time. This article introduces two new ultra-light overhead conveyor designs in logistics and explains their components. According to the explanation of the components, scenarios are created by means of their technical characteristics. The scenarios are visualized with the help of CAD software. After that, assumptions are made for application area. According to these assumptions scenarios are visualized. These scenarios help logistics companies achieve lower development costs as well as quicker market maturity.

Keywords: Logistics, material flow, overhead conveyor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
375 Formex Algebra Adaptation into Parametric Design Tools: Dome Structures

Authors: Réka Sárközi, Péter Iványi, Attila B. Széll

Abstract:

The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.

Keywords: Parametric design, structural morphology, space structures, spherical coordinate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
374 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: Precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
373 Effect of Genotype, Explant Type and Growth Regulators on The Accumulation of Flavonoides of (Silybum marianum L.) in In vitro Culture

Authors: A. Pourjabar, S.A. Mohammadi, R. Ghahramanzadeh, Gh. Salimi

Abstract:

The extract of milk thistle contains a mix of flavonolignans termed silymarine.. In order to analysis influence of growth regulators, genotype, explant and subculture on the accumulation of flavonolignans, a study was carried out by using two genotype (Budakalszi and Noor abad moghan cultivars), cotyledon and hypocotyle explants, solid media of MS supplemented by different combinations of two growth regulators; Kinetin (0.1, 1 mg/l) and 2,4-D (1, 2 mg/l). Seeds of the plant were germinated in MS media whitout growth regulators in growth chamber at 26°C and darkness condition. In order to callus induction, the culture media was supplemented whit different concentrations of 2,4-D and kinetin. Calli obtained from explants were sub-cultured four times into the fresh media of the first experiment. flavonoides was extracted from calli in four subcultures. The flavonoid components were determined by high- performance liquid choromatography (HPLC) and separated into Taxifolin, Silydianin+Silychristin, Silybin A+B and Isosilybin A+B. Results showed that with increasing callus age, increased accumulation of silybin A+B, but reduced Isosilybin A+B content. Highest accumulation of Taxifolin was observed at first calli. Calli produced from cotyledon explant of Budakalszi cultivar were superior for Silybin A+B, where calli from hypocotyl explant produced higher amount of Taxifolin and Silydianin+Silychristin. The best cultivar for Silymarin production in this study was Budakalszi cultivar. High amount of SBN A+B and TXF were obtained from hypocotil explant.

Keywords: Callus culture, Flavonolignans, Silimarine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
372 Building Facade Study in Lahijan City, Iran: The Impact of Facade's Visual Elements on Historical Image

Authors: N. Utaberta, A. Jalali, S. Johar, M. Surat, A. I. Che-Ani

Abstract:

Buildings are considered as significant part in the cities, which plays main role in organization and arrangement of city appearance, which is affects image of that building facades, as an connective between inner and outer space, have a main role in city image and they are classified as rich image and poor image by people evaluation which related to visual architectural and urban elements in building facades. the buildings in Karimi street , in Lahijan city where, lies in north of Iran, contain the variety of building's facade types which, have made a city image in Historical part of Lahijan city, while reflected the Iranian cities identity. The study attempt to identify the architectural and urban elements that impression the image of building facades in historical area, based on public evaluation. Quantitative method were used and the data was collected through questionnaire survey, the result presented architectural style, color, shape, and design evaluated by people as most important factor which should be understate in future development. in fact, the rich architectural style with strong design make strong city image as weak design make poor city image.

Keywords: Building's facade, historical area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3877
371 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo

Abstract:

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.

Keywords: Neural networks, groundwater depth, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
370 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
369 Battery Grading Algorithm in 2nd-Life Repurposing Li-ion Battery System

Authors: Ya Lv, Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat

Abstract:

This article presents a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as energy storage system (ESS). Most of the 2nd-life retired battery systems in market have module/pack-level state of health (SOH) indicator, which is utilized for guiding appropriate depth of discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end of life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance the system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

Keywords: Battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
368 A Concept of Rational Water Management at Local Utilities – The Use of RO for Water Supply and Wastewater Treatment/Reuse

Authors: N. Matveev, A. Pervov

Abstract:

Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.

Keywords: Reverse osmosis, stormwater treatment, openchannel module, wastewater reuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
367 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
366 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, marketing, online marketplace, recommendation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440
365 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
364 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
363 An Evaluation Method for Two-Dimensional Position Errors and Assembly Errors of a Rotational Table on a 4 Axis Machine Tool

Authors: Jooho Hwang, Chang-Kyu Song, Chun-Hong Park

Abstract:

This paper describes a method to measure and compensate a 4 axes ultra-precision machine tool that generates micro patterns on the large surfaces. The grooving machine is usually used for making a micro mold for many electrical parts such as a light guide plate for LCD and fuel cells. The ultra precision machine tool has three linear axes and one rotational table. Shaping is usually used to generate micro patterns. In the case of 50 μm pitch and 25 μm height pyramid pattern machining with a 90° wedge angle bite, one of linear axis is used for long stroke motion for high cutting speed and other linear axis are used for feeding. The triangular patterns can be generated with many times of long stroke of one axis. Then 90° rotation of work piece is needed to make pyramid patterns with superposition of machined two triangular patterns. To make a two dimensional positioning error, straightness of two axes in out of plane, squareness between the each axis are important. Positioning errors, straightness and squarness were measured by laser interferometer system. Those were compensated and confirmed by ISO230-6. One of difficult problem to measure the error motions is squareness or parallelism of axis between the rotational table and linear axis. It was investigated by simultaneous moving of rotary table and XY axes. This compensation method is introduced in this paper.

Keywords: Ultra-precision machine tool, muti-axis errors, squraness, positioning errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
362 Modeling the Hybrid Battery/Super-Storage System for a Solar Standalone Microgrid

Authors: Astiaj Khoramshahi, Hossein Ahmadi Danesh Ashtiani, Ahmad Khoshgard, Hamidreza Damghani, Leila Damghani

Abstract:

Solar energy systems using various storages are required to be evaluated based on energy requirements and applications. Also, modeling and analysis of storage systems are necessary to increase the effectiveness of combinations of these systems. In this paper, analysis based on the MATLAB software has been analyzed to evaluate the response of the hybrid energy system considering various technologies of renewable energy and energy storage. In the present study, three different simulation scenarios are presented. Simulation output results using software for the first scenario show that the battery is effective in smoothing the overall power demand to the consumer studied during a day, but temporary loads on the grid with high frequencies, effectively cannot be canceled due to the limited response speed of battery control. Simulation outputs for the second scenario using the energy storage system show that sudden changes in demand power are paved by super saving. The majority of these sudden changes in power demand are caused by sewing consumers and receiving variable solar power (due to clouds passing through the solar array). Simulation outputs for the third scenario show the effects of the hybrid system for the same consumer and the output of the solar array, leading to the smallest amount of power demand fed into the grid, as well as demand at peak times. According to the "battery only" scenario, the displacement technique of the peak load has been significantly reduced.

Keywords: Storage system, super storage, standalone, microgrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296
361 Methodology of Personalizing Interior Spaces in Public Libraries

Authors: Baharak Mousapour

Abstract:

Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.

Keywords: interior design, library, library design, personalization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
360 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: Autonomic, self-adaption, self-healing, self-optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
359 Impact Assessment using Path Models of Microentrepreneurs developed by a Business Corporation in India

Authors: M. J. Xavier, J. Raja, S. Usha Nandhini

Abstract:

For scores of years now, several microfinance organizations, non governmental organizations and other welfare organizations have, with a view to aiding the progress of communities rooted in poverty have been focusing on creating microentrepreneurs, besides taking several other measures. In recent times, business corporations have joined forces to combat poverty by taking up microenterprise development. Hindustan Unilever Limited (HUL), the Indian subsidiary of Unilever Limited exemplifies this through its Project Shakti. The company through the Project creates rural women entrepreneurs by making them direct to home sales distributors of its products in villages that have thus far been ignored by multinational corporations. The members participating in Project Shakti are largely self help group members. The paper focuses on assessing the impact made by the company on the members engaged in Project Shakti. The analysis involves use of quantitative methods to study the effect of Project Shakti on those self help group members engaged in Project Shakti and those not engaged with Project Shakti. Path analysis has been used to study the impact made on those members engaged in Project Shakti. Significant differences were observed on fronts of entrepreneurial development, economic empowerment and social empowerment between members associated with Project Shakti and those not associated with Project Shakti. Path analysis demonstrated that involvement in Project Shakti led to entrepreneurial development resulting in economic empowerment that in turn led to social empowerment and that these three elements independently induced a feeling of privilege in the women for being associated with the Project.

Keywords: Entrepreneurship development, economicempowerment, impact assessment, microentrepreneurs, pathanalysis, social empowerment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
358 The Study of the Intelligent Fuzzy Weighted Input Estimation Method Combined with the Experiment Verification for the Multilayer Materials

Authors: Ming-Hui Lee, Tsung-Chien Chen, Tsu-Ping Yu, Horng-Yuan Jang

Abstract:

The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux of the multilayer materials as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using the copper sample which is stacked up 4 aluminum samples with different thicknesses. Furthermore, the bottoms of copper samples are heated by applying the standard heat source, and the temperatures on the tops of aluminum are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of copper samples. The influence on the estimation caused by the temperature measurement of the sample with different thickness, the processing noise covariance Q, the weighting factor γ , the sampling time interval Δt , and the space discrete interval Δx , will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input of the multilayer materials.

Keywords: Multilayer Materials, Input Estimation Method, IHCP, Heat Flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
357 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security

Authors: Magdalena Musiał-Karg

Abstract:

The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.

Keywords: Electronic democracy, electronic participation, electronic voting, security of e-voting, ICT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048