

Abstract—In online context, the design and implementation of

effective remote laboratories environment is highly challenging on
account of hardware and software needs. This paper presents the
remote laboratory software framework modified from ilab shared
architecture (ISA). The ISA is a framework which enables students to
remotely acccess and control experimental hardware using internet
infrastructure. The need for remote laboratories came after
experiencing problems imposed by traditional laboratories. Among
them are: the high cost of laboratory equipment, scarcity of space,
scarcity of technical personnel along with the restricted university
budget creates a significant bottleneck on building required
laboratory experiments. The solution to these problems is to build
web-accessible laboratories. Remote laboratories allow students and
educators to interact with real laboratory equipment located
anywhere in the world at anytime. Recently, many universities and
other educational institutions especially in third world countries rely
on simulations because they do not afford the experimental
equipment they require to their students. Remote laboratories enable
users to get real data from real-time hand-on experiments. To
implement many remote laboratories, the system architecture should
be flexible, understandable and easy to implement, so that different
laboratories with different hardware can be deployed easily. The
modifications were made to enable developers to add more
equipment in ISA framework and to attract the new developers to
develop many online laboratories.

Keywords—Batched, ISA, labserver, servicebroker.

I. INTRODUCTION
EMOTE laboratory means online experimentation on real
processes. Contrary to simulations, which rely on

mathematical models, remote laboratories deal with real
signals. Laboratory experiments provide students with
practical experience that help them better understanding the
theory taught in classes. However, normal learners and distant
learners often don’t have access to such equipment. This is
because traditional laboratory instruments are usually
expensive such that many educational institutions cannot
afford the instruments they require for their students.
Sometimes students are overcrowding in laboratory sessions.
In addition, laboratory personnel need to be hired to operate
the facilities, thus imposing additional costs.

By providing remote access to laboratory equipment to
students, the problem of costly traditional laboratories can be
overcome by sharing the few laboratory resources available
[1].

Authors are with Department of Electrical and Computer System

Engineering. University of Dar Es Salaam .Box 35131
Dar Es Salaam, Tanzania. e-mail:teyana@udsm.ac.tz,.
e-mail:dddhaule@udsm.ac.tz

Developments of such laboratories are useful in developing

countries where funds for education resources are hardly
available.. The remote laboratory architecture from MIT
termed iLabs are remote laboratories developed to address the
weakness of conventional laboratories. It is a technology that
allows experimental setups to be accessed remotely through
the Internet, allowing students and educators to carry out
experiments from anywhere at any time [2].

II. TYPES OF REMOTE LABORATORY IN ILAB SHARED
ARCHITECTURE

[2] Divides online laboratory experiments into three
categories: batched, interactive and sensor experiments. Each
has different characteristics and requirements for the online
laboratory. In this paper, the batched architecture is
extensively explained and it has three tiers:

Batched experiments: The experiment, which is entirely
defined before experiment starts. It is termed as “system of
data processing where information is collected into batches
before being processed by the computer in one machine to
run”. Experiment requests can be inserted to a queue and then
device can run those one by one. Benefit of this type of
experiments become evident especially when the experiment
takes long time to conduct and if the system has results saving
and retrieving feature as in that case user is not necessary to
be online during running the experiment. Multiple principles
can be used to schedule experiments, for example first in first
out (FIFO) method, shortest job next method (SJN) as well
different types of other priority methods.

Interactive experiments: defines interactive processing as
opposite to batch: computer mode that allows the user to enter
commands, or programs or data and receive immediate
responses. System allows user to monitor and control some
parameters dynamically during experiment running. This
experiment type requires user to be online while running the
experiment.

Sensor experiments: User does not have any influence to
the measured phenomena, but may choose which data streams
to subscribe. She/he monitors and analyses the continuous
data streams of the sensor.

Describing Experimental specifications
The batched shared ilab shared architecture consists of three

experimental specifications [3], [4], and [5]. These
specifications are lab configuration, Lab specifications and
ExperimentalResult. The function of these specifications is
pass information between client and labserver. This is done

Teyana S. Sapula and Damian D. Haule

Development of Reliable Web-Based
Laboratories for Developing Countries

R

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

892International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

through client/server communication framework, which
encodes the specific lab information between client and
labserver. Here the XML technology is used to encode the
information to be transmitted as plain text.

LabConfiguration: created by the labserver. It contains
information about the name of experiment, list of components
that make up the experiment and their names and pixel
location, the location of the image file, etc. This information
enables the student/user to configure the input of the specified
experiment.

LabSpecifications: created by the client. It contains the
parameters configured by the user and send them to labserver
for processing. ExperimentalResult: When the experiment is
done, the results are packed into the labserver and send back
to the client.

III. SYSTEM ARCHITECTURE

A. Addition made to Labserver software
The development and implementation of remote laboratories

is a very tedious and costly task. A central challenge is to
develop a starting point to allow the rapid, easy and flexible
creation of remote laboratories. To access many different
devices, a high level of abstraction from the developer’s point
of view must be reached. The presented framework simplifies
the integration of multiple instruments into an ilab framework.

The labserver is the core of the iLab-shared architecture. It
houses the hardware equipment in which the experiments are
created and communicate with the equipment to run a
particular set of experimental parameters. In addition, it
communicates with the client through the the service broker.
When the client submits the experiment, the execution takes
place. When the experiment has been successfully completed,
the labserver notifies the servicebroker that the results are
ready for retrieval. The labserver hosts the ELVIS drivers in
the presented framework, which are able to interact direct with
the NI ELVIS instruments such as function generator,
oscilloscope, etc using driver software. The modular can
communicate as well as other non-ELVIS instruments.

The labserver has two main parts: LabServer LabVIEW and
LabServer Visual Basic. Labview interact direct to hardware.
The labserver Visual Basic contains eight components. But the
main components are:

(a) Experiment_Engine

 It is a stand-alone execution engine which contain the
main() subroutine, that checks the database for any queued
experiments. If there is any, it de-queues it. The
experiment_engine loops through specific database table for
new run requests and then forwards them to the wrapper class
to call the specific LabView shared library (dll) node. In
addition, it takes care of the communications to the real
laboratory devices. Furthermore, when experiment_engine
calls New() function of the wrapper class, it gets an instance
of wrapper class, which can be used as a factory to create a
needed type of wrapper by calling the getWrapper function by

giving experiment type as a parameter (this can be obtained
from setup, as it is created before this call). Now when we call
RunExperiment() on the experiment engine, the method is
forwarded to the correspondent child wrapper e.g. to
TransienAnalyse in case the experiment type is
TransientAnalyse.

In the first version of the Educational Laboratories Virtual
Instrumentation Suite (ELVIS) weblab [6], the experiment
specification xml was parsed and validated in the experiment
specification engine and then handled to a specific wrapper to
be sent to the laboratory device. In the new model, the setup
and wrapper are separated from the experiment_engine as it
will be explained in setup and wrapper sections.

(b) Setup
Consist of one or more available terminals (instruments). This
class is a parent, created to ease the adding of new experiment
setups to the system. It consists of one or more terminals that
are specialized using inheritance to a specific terminal or
instrument. This project contains three classes:

(i) The Setup class
This has setups structure that obtains the terminals from the

experiment specification xml. This class has the method
parseXMLSpec() which forwards terminal dependent parts of
the xml to base terminal class to create a new terminal with
the experiment specification parameters chosen by the client
(assumes that the experiment specification parameters are
validated in validation engine before parsing to setup). The
setup will determine whether the experiment being run is time
response or frequency response by looking at the parameters
send by the client. The result also will look at the parameters
used at the input and the data array in the waveform.

(ii) Terminal class
This has the base terminal, contains the fuctions that are

common to all terminals. It contains createNewTerminal
method to create specific terminal. This class act as factory
for creating different types of terminals based on the type of
terminal given on parameters that are setupID where this
particular terminal belongs, instrumentTypeStr that is the type
of terminal to be created. It returns the new child class
terminal (for example TerminalBODE class).

(iii) TerminalBODE (for example)
This is a class to represent the specific instrument and its

parameters. It inherits from Terminal class and so all functions
and class variables in terminal class are to be used also here.
This class contains a method that creates a new specific
terminal corresponding to the given experiment type. For the
TerminalBODE the specific parameters to this terminal are
waveformType, amplitude, frequency and offset.

(c) Wrapper
This class provides a wrapper around the Labview dlls that

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

893International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

communicate with the ELVIS board to run the experiment. In
our effort of reducing the dependence of experiment_engine
on the setup type to choosing of the correct wrapper, we
generalized wrapper class and then specialized different
wrapper by using inheritance. This way we were able to
provide understandable way to add more setups to the system
and then by using factory method to create wrappers. We
finally made the experiment engine independent of specific
setups or terminals. The wrapper runs an experiment in the
setup (assumes that setup is validated before passing to this
function). It returns an arrayList with the waveform values
generated by running the experiment. In addition, wrapper
contains classes depend on the functions to be done. At the
time of writing this paper, two functions are created. These are
ACAnalyze.vb for Time Response Analysis and
ACAnalyze.vb for Frequency Response Analysis. The
RunExperiment() method in each class is called from the
experiment engine. This method calls the runExperiment()
method in the PInvoke class that imports the LabView DLL
with the parameters passed from the experiment engine. The
DLL returns an interleaved array of the output data back from
the LabView code. The array of results are returned back
through the results() and give it to the setup method
getResultXML().

(d) WebLab Data Managers
The WebLab Data Managers component serves as the

primary interface between the Data Persistence Layer of the
Lab Server. On the Web Server side, the data managers
contain methods defining certain well known interactions with
the Data Persistence (Database) Layer and are referenced by
the other components within the web server process space.

(e) Experiment Setups
The labserver administrative interface is an ASP website

where experiments are created. It interacts direct with the SQL
database.

(f) ResourcePermissionManager
Contains the Visual Basic code for database. In particular,

the SQL methods are exposed here as a VB.NET component
utilized by an ASP.NET page or web service method.

(g) Validation_engine
This is the first thing that is called before the job is queued

for execution. It checks whether the inputs specified by the
user meets the specification set by the designer of the
experiment when setting up the assignment. It works the same
way as the parseXMLSpec() method in the setup to extract the
experiment parameters and checks these values against the
values stored in the database.

B. Addition made to Lab client software
The client is where the students/users specify the

parameters to be used in the experiment. It is a Java Applet

launched from the service broker. It uses Simple Object
Access Protocol (SOAP) to communicate with the
servicebroker. When launched, the client is initiated through
the GraphicalApplet class and the SBServer class is
instantiated in the Applet class. The init() method in
GraphicalApplet class create the new WebLabClient. When
this happens, the LabConfiguration() method in
WebLabClient is called. This method fetches the
LabConfigurationXML file in the labserver database through
the service broker getlabconfiguration() SOAP call in the
SBServer class. The fetched labconfiguration xml is then
parsed to the labconfiguration class method
parseXMLConfiguration(). From parsing the lab
configuration, a list of terminals is created. Each instrument
has instrument type, instrument number, x-pixel location, y-
pixel location and label to identify where the terminal is
located in the setup image.

From a list of terminal, a setup is created which represent
the current setup. The setup has setupID, name, description,
imageURL, and a list of terminals that are present in that
experiment. Once the lab configuration has been parsed, the
setup is stored in the ExperimentSpecification thesetup field
and the instrument eg FGEN, SCOPE or BODE are created
from terminal information and stored in the instruments vector
in the terminal class. Then the MainFrame draws the main
client elements including buttons and menu bars. The
MainFrame then calls the SchematicPanel and ResultsPanel,
which draws the axes for plotting later. The SchematicPanel
uses the setup stored in the thesetup in the
ExperimentSpecification to draw the image of the experiment
and the corresponding InstrumentLabel for the instruments in
the setups. When the user clicks on any instrument labels, the
dialog box appears. Each instrument has its own dialog box
for input parameters user enters.

When the user clicks the Run button, the
ExperimentSpecificationXML document is created in the
ExperimentSpecification class. This experiment specification
is sent to the labserver via the execute SOAP call in the
SBServer class. The experiment is submitted to the labserver
and the execution is taking place. When the experiment is
completed, the labserver send the notification to the client via
the service broker. The RetrieveResult SOAP request is used
to get the ExperimentResultsXML from the labserver database.
The parseXMLExperimentResult() method in
ExperimentResult class is used to parse the
ExperimentResultXML file.

Client
The client is where the students/users specify the parameters

to be used in the experiment. It is a Java Applet launched from
the service broker. It uses Simple Object Access Protocol
(SOAP) to communicate with the service Broker. When
launched, the client is initiated through the GraphicalApplet
class and the SBServer class is instantiated in the Applet class.
The init() method in GraphicalApplet class create the new
WebLabClient. When this happens, the LabConfiguration()

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

894International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

method in WebLabClient is called. This method fetches the
LabConfigurationXML file in the labserver database through
the service broker getlabconfiguration() SOAP call in the
SBServer class. The fetched labconfiguration xml is then
parsed to the labconfiguration class method
parseXMLConfiguration(). From parsing the lab
configuration, a list of terminals is created. Each instrument
has intrument type, instrument number, x-pixel location, y-
pixel location and label to identify where the terminal is
located in the setup image. From a list of terminal, a setup is
created which represent the current setup. The setup has
setupID, name, description, imageURL, and a list of terminals
that are present in that experiment. Once the lab configuration
has been parsed, the setup is stored in the
ExperimentSpecification thesetup field and the instrument eg
FGEN and SCOPE are created from terminal information and
stored in the instruments vector in the terminal class. Then
the MainFrame draws the main client elements including
buttons and menu bars. The MainFrame then calls the
SchematicPanel and ResultsPanel, which draws the axes for
plotting later.

The SchematicPanel uses the setup stored in the thesetup in
the ExperimentSpecification to draw the image of the
experiment and the corresponding InstrumentLabel for the
instruments in the setups.

IV. SAMPLE EXPERIMENT: FREQUENCY DOMAIN
ANALYSIS (ACANALYZE)

The Bode Analyzer is used to display frequency response
and the corresponding phase angle (Bode Plot) of the circuit.
The magnitude against frequency and phase angle against
frequency are obtained by making use of sweep feature of
function generator and analogue input capability of DAQ
device. To perform the frequency response analysis, the Bode
Analyzer instrument is required.

The Bode Analyze was not included in ilab ELVIS version
1.0 framework. So Bode Analyzer is first added to ilab
framework and then the frequency analysis of the single stage
CE, RC coupled amplifier is performed. To add the Bode
Analyze to the ilab framework, certain areas have to be
changed to accommodate the amplitude, start frequency, stop
frequency and steps parameters. These areas include
experiment_engine, experiment wrapper, experiment_setups,
ResourcePermissionManager, updating the SQL Database,
updating the how the Experiment Specification and
Experiment Result XML documents are written and parsed,
updating the client code such that it will gather and send the
appropriate experiment parameters. I will explain in more
detail of the changes made in the following sections. The best
place to start development is in the labview. The best way to
add a new feature is to start by creating a new VI for it. Most
of the features on the ELVIS have an associated Express VI,
and this is usually the best and easiest way to interact with the
hardware.

The frequency response of a single stage amplifier in
labview has two stages: BodeAnalyze.vi and AcAnalyzer.vi

as shown in figure 1 and figure 2 respectively.

Labview

(a) BodeAnalyze.vi
BodeAnalyzer.vi is first created in the LabView. This vi

runs Bode Analyzer parameters from the client and the
function generator hardware to sweep the sine waves. The
BodeAnalyzer.vi utilizes the Bode Analyzer VI Express that is
provided in Labview to run the ELVIS functionalities. This vi
is then put in ACAnalyze.vi as a subvi.

Fig. 1: The BodeAnalyze.vi

(b) ACAnalyze.vi
The ACAnalyze.vi is the entry point to the labview from the

DLL. This enables the parameters from the client to get to
BodeAnalyze.vi, which runs the experiment on the ELVIS
board. When the experiment is done, the results are collected
in the result waveform in the BodeAnalyze.vi and passes back
to ACAnalyze.vi to DLL.

Fig. 2: The ACAnalyze.vi

Labserver experiment_engine
It calls the setup, which has parseXMLSpec method and

parses the experiment specification. Then the setup calls the
terminal that creates the terminal from the specific terminal
class, TerminalBODE.vb to get the specific parameters of that
instrument. The RunExperiment() method in the ACAnalyze
class calls the compiled LabView DLL with the specified
parameters. The DLL runs the experiment on the ELVIS
hardware. Once the experiment is run it returns from the

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

895International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

ACAnalyze class back to the runExperiment() method in the
experiment engine with an array of data for graphs that will be
displayed to the client. The data points are then put into an
XML file called the “Experiment Results” and sent back to the
client for display to the client. Finally the execution engine
triggers a notification (via the Notify() method) to the
ServiceBroker saying the data is ready.

Setup
This class has the method parseXMLSpec. This method

parses the experiment specification (an XML file that contains
amplitude, start frequency, stop frequency and steps
parameters chosen by the client). It parses the XML parts from
validation engine and delegates each parsing of each terminal
to terminal class. The parsed data elements are loaded into
class variables for processing by other private and internal
methods. The result will look at the parameters used at the
input and the data array in the waveform. Then, the gain and
phase of the single stage amplifier are determined. For the
gain, the x-axis is Frequency in log scale and y-axis is the
magnitude in dB in linear scale. For the phase measurement,
x-axis is Frequency in log scale and y-axis is the magnitude in
degrees in linear scale.

Wrapper
This class provides a wrapper around the Labview dlls that

communicate with the ELVIS board for the AC Analyze
experiment. It runs an experiment in the setup with parameters
amplitude, start frequency, stop frequency and steps. It
returns an arrayList with the waveform values generated by
running the experiment.

validation_engine
This is the first thing that is called before the job is queued

for execution. It checks whether the inputs specified by the
user meets the specification set by the designer of the
experiment when setting up the assignment. It works the same
way as the parseXMLSpec() method in the setup to extract the
experiment parameters and checks these values against the
values stored in the database.

Database

The changes made in the database are in the the Setups
Table, the experiment_type field is added and
AddSetupTerminal, the start frequency, stop frequency and
steps are added. These are changed to accommodate
amplitude, the start frequency, stop frequency and the steps.

The Lab Server administration pages changed so that the
new functionality is available to be seen by whoever is
making the labs. This can be done by modifying experiment-
setups.aspx page. Things that should be changed here include

adding the new instrument to the drop down lists of available
instrument and adding constraint fields for the new
instrument.

ResourcePermissionManager

This class file contains the Visual Basic code for
WebLabServicesLS database. In particular, the SQL methods
are exposed here as a VB.NET component utilized by an
ASP.NET page or web service method. The individual
methods contain input validation code and invocation of the
appropriate SQL stored procedure. Example below shows the
validation of bode analyzer parameters.

Client
The first step in adding a new functionality was creating a

Bode class. This class extends the Instrument class. An
instrument identifier number should be added in the
Instrument class for the new instrument.

Then, add the function for the new instrument by extending
the SourceFunction class. The function for new instrument
stores the information parameters for the instrument. In this
case the ACAnalyzeFunction is the function for the BODE
instrument and stores information like the waveform type
selected by the user and the parameters like amplitude, start,
stop, steps, gain and phase, etc are associated with the
waveform. The ACAnalyzeFunction similarly has the fields to
store the start, stop frequencies and the steps per decade to be
used for the bode analysis.

After that, next step is to make the instrument label for the
sweep feature. This extends from the InstrumentLabel class.
This class has a chooseImageName() method that specifies the
name of the image to be used for the instrument. You will
need to draw an image for the instrument and put the image in
the ‘img’ folder and put the name of the image in the method.
You can also add a case for your instrument in the
updateToolTip() method in the InstrumentLabel class to show
a tool tip. Next thing was to create the dialog user interface
that will be used to modify the instrument. This will appear
when the label for that instrument is placed. The FGENDialog
class was added.

To handle the parsing of the lab configuration the a case is
added for the instrument in the parseXMLLabConfiguration()
method in the LabConfiguration class. This just assigns a type
to the instrument so that it is recognized when the instrument
in created in ExperimentSpecification class.

When the bode analyzer is added to NI ELVIS code, the
client launches the single stage amplifier with the bode
analyzer parameters which are amplitude, start, stop and steps.
The results are the gain in dB against frequency in logarithm
scale and phase in degrees against frequency in logarithm as
shown in Fig.3 (a), (b).

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

896International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

Fig. 3(a): The gain against frequency

Fig. 3(b): The phase against frequency

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

897International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

V. CONCLUSION
The simplified architecture made to the ELVIS platform

greatly increase flexibility of the batched ilab framework. The
results obtained in web accessible of lab experiments is very
close to traditional labs as the experiments are done in real
equipment contrary to simulations which the experiments are
done depending on mathematical models

REFERENCES
[1] C.C. Ko, B. M Chen, J. Chen, Y. Zhuang and K. C. Tan, “Development

of a Web-Accessible laboratory for control experiments on a coupled
tank apparatus,” IEEE Transactions on Education, vol. 44, no. 1, pp.
76–86, 2001.

[2] J.V. Harward, J. del Alamo, V.S. Choudhary, K. deLong, J. Hardison,
S.R. Lerman, J. Northridge, D. Talavera, C. Wang, K. Yehia, D. Zych, "
iLab: A Scalable Architecture for Sharing Online Experiments”,
International Conference on Engineering Education, Gainesville,
Florida, 2004.

[3] P. Bailey, “The online experiments shared architecture and the future of
web based laboratory Experiments”, 2004.

[4] V.N. Gerardo, “Design and Implementation of a Feedback Systems Web
Laboratory Prototype”, AUP Final Report, MIT EECS, 2004.

[5] G. Viedma, J. D. Isaac and H. L., Kent, “A Web-Based Linear-Systems
iLab”submitted to the 2005 American control conference.

[6] S. Gikandi, “A Flexible Platform for Online Laboratory Experiments in
Electrical Engineering”, Master of Engineering in Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology, 2006.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:5, 2010

898International Scholarly and Scientific Research & Innovation 4(5) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
5,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
42

43
.p

df

