Search results for: Monthly waste flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3076

Search results for: Monthly waste flow

1006 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions

Authors: Abdulrahman M. Homadi

Abstract:

This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.

Keywords: Solar energy, air heater, control of temperature, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
1005 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5

Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying

Abstract:

Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.

Keywords: Alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
1004 The Euler Equations of Steady Flow in Terms of New Dependent and Independent Variables

Authors: Peiangpob Monnuanprang

Abstract:

In this paper we study the transformation of Euler equations  1 , u u u Pf t (ρ ∂) + ⋅∇ = − ∇ + ∂ G G G G ∇⋅ = u 0, G where (ux, t) G G is the velocity of a fluid, P(x, t) G is the pressure of a fluid andρ (x, t) G is density. First of all, we rewrite the Euler equations in terms of new unknown functions. Then, we introduce new independent variables and transform it to a new curvilinear coordinate system. We obtain the Euler equations in the new dependent and independent variables. The governing equations into two subsystems, one is hyperbolic and another is elliptic.

Keywords: Euler equations, transformation, hyperbolic, elliptic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1003 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1002 Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field

Authors: Y.Bakhshan, H.Ashoori

Abstract:

In this research, a 2-D computational analysis of steady state free convection in a rectangular enclosure filled with an electrically conducting fluid under Effect of Magnetic Field has been performed. The governing equations (mass, momentum, and energy) are formulated and solved by a finite volume method (FVM) subjected to different boundary conditions. A parametric study has been conducted to consider the influence of Grashof number (Gr), Prantdl number (Pr) and the orientation of magnetic field on the flow and heat transfer characteristics. It is observed that Nusselt number (Nu) and heat flux will increase with increasing Grashof and Prandtl numbers and decreasing the slope of the orientation of magnetic field.

Keywords: Rectangular Cavity, magneto-hydrodynamic, free convection, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
1001 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct

Authors: Nur Irmawati, H.A. Mohammed

Abstract:

In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics are studied in detail. This study covers Rayleigh number in the range of 2 × 10^6 ≤ Ra ≤ 2 × 10^7 and Reynolds number in the range of 100 ≤ Re ≤ 1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It is also found that the dimensionless temperature distribution increases as Rayleigh number increases.

Keywords: Numerical simulation, Mixed convection, Horizontal rectangular duct, Nanofluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
1000 A Study on Characteristics and Geometric Parameters of the Flat Porous Aerostatic Bearing

Authors: T. Y. Huang, B. Z. Wang, S. C. Lin, S. Y. Hsu

Abstract:

A CFD software was employed to analyze the characteristics of the flat round porous aerostatic bearings. The effects of gap between the bearing and the guide way and the porosity of the porous material on the load capacity of the bearing were studied. The adequacy of the simulation model and the approach was verified. From the parametric study, it is found that the depth of the flow path does not influence the load capacity of the bearing; the load capacity of the bearing will decrease if the thickness of the porous material increases or the porous material protrudes above the bearing housing; the variation of the chamfer at the edge of the bearing does not affect the bearing load capacity. For a bearing with an air gap of 5μm and a porosity of 0.1, the average load capacity and the pressure distribution of the bearing are nearly unchanged no matter the bearing moves at a constant or a varying speed.

Keywords: Aerostatic bearing, Load capacity, Porosity, Porous material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
999 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production

Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban

Abstract:

The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.

Keywords: Biomass, ash, cementitious material, mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
998 Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator

Authors: Weiwei Shan, Wenjing Ding, Juan Ning, Chao He, Zijuan Wang

Abstract:

Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN2) gravity circulation loop including its equipment and layout is designed and has served as LN2 feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K.

Keywords: Cryopumps, gravity circulation loop, liquid nitrogen, two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
997 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
996 Experimental Study of Steel Slag Used as Aggregate in Asphalt Mixture

Authors: Magdi M. E. Zumrawi, Faiza O. A. Khalill

Abstract:

Steel slag is a by-product of the steel industry and can be used potentially as aggregate in the asphalt mixture. This study evaluates the use of Steel Slag Aggregates (SSA) as a substitute for natural aggregates in the production of hot mix asphalt (HMA) for road construction. Based on intensive laboratory testing program, the characteristic properties of SSA were assessed to determine its suitability to be used in HMA. Four different percentages (0, 50, 75, and 100%) of SSA were used, and the proposed mix designs for HMA were conducted in accordance with Marshall mix design. The experiment results revealed that the addition of SSA has a significant improvement on the properties of HMA. An increase in density and stability and a reduction in flow and air voids values were clearly observed in specimens prepared with 100% SSA. It is concluded that the steel slag can be considered reasonable alternative source of aggregate for concrete asphalt mixture production.

Keywords: Aggregate, asphalt mixture, stability, steel slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3234
995 Effect of Adding Sawdust on Mechanical- Physical Properties of Ceramic Bricks to Obtain Lightweight Building Material

Authors: Bachir Chemani, Halima Chemani

Abstract:

This paper studies the application of a variety of sawdust materials in the production of lightweight insulating bricks. First, the mineralogical and chemical composition of clays was determined. Next, ceramic bricks were fabricated with different quantities of materials (3–6 and 9 wt. % for sawdust, 65 wt. % for grey clay, 24–27 and 30 wt. % for yellow clay and 2 wt% of tuff). These bricks were fired at 800 and 950 °C. The effect of adding this sawdust on the technological behaviour of the brick was assessed by drying and firing shrinkage, water absorption, porosity, bulk density and compressive strength. The results have shown that the optimum sintering temperature is 950 °C. Below this temperature, at 950 °C, increased open porosity was observed, which decreased the compressive strength of the bricks. Based on the results obtained, the optimum amounts of waste were 9 wt. % sawdust of eucalyptus, 24 wt. % shaping moisture and 1.6 particle size diameter. These percentages produced bricks whose mechanical properties were suitable for use as secondary raw materials in ceramic brick production.

Keywords: Clay brick, Porosity, Sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4131
994 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention

Authors: Mahbub C. Mishu, Venketesh N. Dubey, Tamas Hickish, Jonathan Cole

Abstract:

Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.

Keywords: Pressure ulcer, viscoelastic material, mathematical model, experimental validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
993 Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior

Authors: A. Mallick

Abstract:

The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.

Keywords: Nanocrystalline, tensile properties, temperature effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
992 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: Decision tree, water quality, water pollution, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
991 Bandwidth allocation in ATM Network for different QOS Requirements

Authors: H. El-Madbouly

Abstract:

For future Broad band ISDN, Asynchronous Transfer Mode (ATM) is designed not only to support a wide range of traffic classes with diverse flow characteristics, but also to guarantee the different quality of service QOS requirements. The QOS may be measured in terms of cell loss probability and maximum cell delay. In this paper, ATM networks in which the virtual path (VP) concept is implemented are considered. By applying the Markov Deterministic process method, an efficient algorithm to compute the minimum capacity required to satisfy the QOS requirements when multiple classes of on-off are multiplexed on to a single VP. Using the result, we then proposed a simple algorithm to determine different combinations of VP to achieve the optimum of the total capacity required for satisfying the individual QOS requirements (loss- delay).

Keywords: Bandwidth allocation, Quality of services, ATMNetwork, virtual path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
990 PIV Investigation into the Evolution of Vortical Structures in the Zero Pressure Gradient Boundary Layer

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir

Abstract:

Experimental investigation has been carried out towards understanding the complex fluid dynamics involved in the interaction of vortical structures with zero pressure gradient boundary layer. A laminar boundary layer is produced on the flat plate placed in the water flume and the synthetic jet actuator is deployed on top of the plate at a definite distance from the leading edge. The synthetic jet actuator has been designed in such a way that the to and fro motion of the diaphragm is maneuvered at will by varying the operating parameters to produce the typical streamwise vortical structures namely hairpin and tilted vortices. PIV measurements are made on the streamwise plane normal to the plate to evaluate their interaction with the near wall fluid.

Keywords: Boundary layer, synthetic jet actuator, flow separation control, vortical structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
989 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates

Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib

Abstract:

The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating  that the flow equations possess an infinite set of solutions. 

Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3429
988 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

Authors: A. Ja, J. Belabid, A. Cheddadi

Abstract:

This paper reports the numerical simulation of doublediffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

Keywords: Natural convection, double-diffusion, porous medium, annular geometry, finite differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
987 Experimental Investigation of Karanja Oil as a Fuel for Diesel Engine-Using Shell and Tube Heat Exchanger

Authors: Nabnit Panigrahi, M. K. Mohanty, S. K. Acharya, S. R Mishra, R. C. Mohanty

Abstract:

This paper presents experimental investigation carried out on an unmodified four stroke diesel engine running with preheated straight vegetable oil (SVO) of Karanja. The viscosity of straight karanja oil was reduced by preheating the oil up to 1600C under different load condition. The preheating was done with the help of a Shell and Tube heat exchanger equipment without using any external power source. The heat exchanger was designed in the lab and the heating source was by waste exhaust gas from engine. The experimental results data were analyzed by using 20% blends of svo of Karanja with 80% diesel by volume and 100% preheated svo of karanja for various parameters like specific fuel consumption, brake thermal efficiency and emission of exhaust gas like CO, CO2, HC and NOx. The results indicated that by using straight karanja oil, the emission parameter increases as compared to diesel but regarding engine performance it was found to be very close to that of diesel. All total it can be a replacement of diesel with a small efficiency drop.

Keywords: Karanja oil, Performance analysis, Shell &Tube heat exchanger, SVO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035
986 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and the snapshot and hierarchical index are used in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: Agent, network backup system, three architecture model, NSBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
985 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel

Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee

Abstract:

Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.

Keywords: Synthetic jets, microchannel, electronic cooling, computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
984 Hybrid Power – Application for Tourism in Isolated Areas

Authors: Aurelian Octavian Ciucâ, Ioan Bitir-Istrate, Mircea Scripcariu

Abstract:

The rapidly increasing costs of power line extensions and fossil fuel, combined with the desire to reduce carbon dioxide emissions pushed the development of hybrid power system suited for remote locations, the purpose in mind being that of autonomous local power systems. The paper presents the suggested solution for a “high penetration" hybrid power system, it being determined by the location of the settlement and its “zero policy" on carbon dioxide emissions. The paper focuses on the technical solution and the power flow management algorithm of the system, taking into consideration local conditions of development.

Keywords: Renewable energy, hybrid power system, wind turbine, photovoltaic panels, bio-diesel cogeneration, bio-fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
983 Integration of CMOS Biosensor into a Polymeric Lab-on-a-Chip System

Authors: T. Brettschneider, C. Dorrer, H. Suy, T. Braun, E. Jung, R. Hoofman, M. Bründel, R. Zengerle, F. Lärmer

Abstract:

We present an integration approach of a CMOS biosensor into a polymer based microfluidic environment suitable for mass production. It consists of a wafer-level-package for the silicon die and laser bonding process promoted by an intermediate hot melt foil to attach the sensor package to the microfluidic chip, without the need for dispensing of glues or underfiller. A very good condition of the sensing area was obtained after introducing a protection layer during packaging. A microfluidic flow cell was fabricated and shown to withstand pressures up to Δp = 780 kPa without leakage. The employed biosensors were electrically characterized in a dry environment.

Keywords: CMOS biosensor, laser bonding, silicon polymer integration, wafer level packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006
982 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: Natural fibers, polymer matrix composites, jute, compression molding, biodegradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
981 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids

Authors: Sameh Frikha, Mohamed Salah Abid

Abstract:

We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.

Keywords: Coefficient of Performance, Environment friendly zeotropic mixture, Integrated cascade, Ultra low temperature, Vapor compression refrigeration cycles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
980 Batch and Continuous Packed Column Studies Biosorption by Yeast Supported onto Granular Pozzolana

Authors: A. Djafer, S. Kouadri Moustefai, A. Idou, M. Douani

Abstract:

The removal of chromium by living yeast biomass immobilized onto pozzolana was studied. The results obtained in batch experiments indicate that the immobilized yeast on to pozzolana is a excellent biosorbent of Cr(V) with a good removal rates of 85–90%. The initial concentration solution and agitation speed affected Cr(V) removal. The batch studies data were described using the Freundlich and Langmuir models, but the best fit was obtained with Langmuir model. The breakthrough curve from the continuous flow studies shows that immobilized yeast in the fixed-bed column is capable of decreasing Cr(VI) concentration from 15mg/l to a adequate level. 

Keywords: Biosorption, yeast, chromium, kinetic biosorption, fixed biomass

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
979 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee

Abstract:

In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.

Keywords: Automotive shredder residue, microwave treatment, chlorinated plastics, separation, heavy metals, Immobilization, separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
978 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
977 Smart Spoiler for Race Car

Authors: M.H. Djavareshkian, A. Esmaeli

Abstract:

A pressure-based implicit procedure to solve Navier- Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used to simulate flow around the smart and conventional flaps of spoiler under the ground effect. Cantilever beam with uniformly varying load with roller support at the free end is considered for smart flaps. The boundedness criteria for this procedure are determined from a Normalized Variable diagram (NVD) scheme. The procedure incorporates es the k -ε eddyviscosity turbulence model. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around a spoiler section with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared.

Keywords: Smart spoiler, Ground Effect, Flap, Aerodynamic coefficients, Race car.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488