Search results for: nonlinear estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2026

Search results for: nonlinear estimation

1846 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1845 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method

Authors: Nemat Abazari, Reza Abazari

Abstract:

In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.

Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
1844 Combined Beamforming and Channel Estimation in WCDMA Communication Systems

Authors: Nermin A. Mohamed, Mohamed F. Madkour

Abstract:

We address the problem of joint beamforming and multipath channel parameters estimation in Wideband Code Division Multiple Access (WCDMA) communication systems that employ Multiple-Access Interference (MAI) suppression techniques in the uplink (from mobile to base station). Most of the existing schemes rely on time multiplex a training sequence with the user data. In WCDMA, the channel parameters can also be estimated from a code multiplexed common pilot channel (CPICH) that could be corrupted by strong interference resulting in a bad estimate. In this paper, we present new methods to combine interference suppression together with channel estimation when using multiple receiving antennas by using adaptive signal processing techniques. Computer simulation is used to compare between the proposed methods and the existing conventional estimation techniques.

Keywords: Adaptive arrays, channel estimation, interferencecancellation, wideband code division multiple access (WCDMA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
1843 Localization of Near Field Radio Controlled Unintended Emitting Sources

Authors: Nurbanu Guzey, S. Jagannathan

Abstract:

Locating Radio Controlled (RC) devices using their unintended emissions has a great interest considering security concerns. Weak nature of these emissions requires near field localization approach since it is hard to detect these signals in far field region of array. Instead of only angle estimation, near field localization also requires range estimation of the source which makes this method more complicated than far field models. Challenges of locating such devices in a near field region and real time environment are analyzed in this paper. An ESPRIT like near field localization scheme is utilized for both angle and range estimation. 1-D search with symmetric subarrays is provided. Two 7 element uniform linear antenna arrays (ULA) are employed for locating RC source. Experiment results of location estimation for one unintended emitting walkie-talkie for different positions are given.

Keywords: Localization, angle of arrival (AoA), range estimation, array signal processing, ESPRIT, uniform linear array (ULA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
1842 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach

Authors: Kriangkrai Maneerat, Chutima Prommak

Abstract:

Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN).We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.

Keywords: Floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3204
1841 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems

Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.

Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
1840 Two New Relative Efficiencies of Linear Weighted Regression

Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian

Abstract:

In statistics parameter theory, usually the parameter estimations have two kinds, one is the least-square estimation (LSE), and the other is the best linear unbiased estimation (BLUE). Due to the determining theorem of minimum variance unbiased estimator (MVUE), the parameter estimation of BLUE in linear model is most ideal. But since the calculations are complicated or the covariance is not given, people are hardly to get the solution. Therefore, people prefer to use LSE rather than BLUE. And this substitution will take some losses. To quantize the losses, many scholars have presented many kinds of different relative efficiencies in different views. For the linear weighted regression model, this paper discusses the relative efficiencies of LSE of β to BLUE of β. It also defines two new relative efficiencies and gives their lower bounds.

Keywords: Linear weighted regression, Relative efficiency, Lower bound, Parameter estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1839 Improved Fuzzy Neural Modeling for Underwater Vehicles

Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray

Abstract:

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
1838 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations

Authors: Shishen Xie

Abstract:

In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations

Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
1837 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1836 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes

Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail

Abstract:

The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.

Keywords: PID, LQR, Two-wheels balancing robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
1835 Variogram Fitting Based on the Wilcoxon Norm

Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean

Abstract:

Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.

Keywords: Non-Linear Wilcoxon, robust estimation, Variogram estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
1834 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri

Abstract:

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Keywords: Motor drive, sensorless control, adaptive observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
1833 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials

Authors: N. N. Omehe

Abstract:

CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω)  from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.

Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
1832 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi

Abstract:

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
1831 A Review in Advanced Digital Signal Processing Systems

Authors: Roza Dastres, Mohsen Soori

Abstract:

Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.

Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
1830 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping

Authors: Da-Xue Chen, Guang-Hui Liu

Abstract:

In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.

Keywords: Oscillation theorem, second-order nonlinear neutral dynamic equation, variable delay, damping, Riccati transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1829 Spread Spectrum Code Estimation by Genetic Algorithm

Authors: V. R. Asghari, M. Ardebilipour

Abstract:

In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.

Keywords: Code estimation, genetic algorithms, spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
1828 Perturbation Based Modelling of Differential Amplifier Circuit

Authors: Rahul Bansal, Sudipta Majumdar

Abstract:

This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.

Keywords: Differential amplifier, perturbation method, Taylor series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
1827 Effectiveness of Business Software Systems Development and Enhancement Projects versus Work Effort Estimation Methods

Authors: Beata Czarnacka-Chrobot

Abstract:

Execution of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) is characterized by the exceptionally low effectiveness, leading to considerable financial losses. The general reason for low effectiveness of such projects is that they are inappropriately managed. One of the factors of proper BSS D&EP management is suitable (reliable and objective) method of project work effort estimation since this is what determines correct estimation of its major attributes: project cost and duration. BSS D&EP is usually considered to be accomplished effectively if product of a planned functionality is delivered without cost and time overrun. The goal of this paper is to prove that choosing approach to the BSS D&EP work effort estimation has a considerable influence on the effectiveness of such projects execution.

Keywords: Business software systems, development and enhancement projects, effectiveness, work effort estimation methods, software product size, software product functionality, project duration, project cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
1826 Signal and Harmonic Analysis of a Compressor Blade for Identification of the Nonlinear Frequency Vibration

Authors: Farhad Asadi, Gholamhasan Payganeh

Abstract:

High-speed turbomachine can experience significant centrifugal and gas bending loads. As a result, the compressor blades must be able to resist high-frequency oscillations due to surge or stall condition in flow field dynamics. In this paper, vibration characteristics of the 6th stage blade compressor have been examined in detail with, using 3-D finite element (FE) methods. The primary aim of this article is to gain an understanding of nonlinear vibration induced in the blade against different loading conditions. The results indicate the nonlinear behavior of the blade as a result of the amplitude of resonances or material properties. Since one of the leading causes of turbine blade failure is high cycle fatigue, simulations were started by specifying the stress distribution in the blade due to the centrifugal rotation. Next, resonant frequencies and critical speeds of the blade were defined by modal analysis. Finally, the harmonic analysis was simulated on the blades.

Keywords: Nonlinear vibration, modal analysis, resonance, frequency response, compressor blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
1825 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

Authors: A. Puras Trueba, J. R. Llata García

Abstract:

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
1824 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations

Authors: Jinfeng Wang, Yang Liu, Hong Li

Abstract:

In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.

Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
1823 Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load

Authors: S.Ali Al-Mawsawi

Abstract:

In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.

Keywords: UPFC, PWM, Nonlinear load, Multi-Machines system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
1822 Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method

Authors: Kang-Gyu Park, Sun-Jong Park, Hong Jae Yim, Hyo-Gyung Kwak

Abstract:

This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic nonlinearity parameter was obtained by amplitudedependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic nonlinearity parameter and residual strength was proposed from each test result.

Keywords: Fire damaged concrete, nonlinear resonance vibration method, nonlinearity parameter, post-fire-curing, splitting tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
1821 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

Authors: Won Sup Kim, Xue-Mei Cui, Seung Kee Han

Abstract:

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

Keywords: Chaotic oscillator, complex network, inverse coherence matrix, network estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
1820 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF

Authors: Karunakar A K, Manohara Pai M M

Abstract:

In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.

Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1819 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials

Authors: Sajjad Farashi

Abstract:

Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.

Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1818 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1817 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers

Authors: M. Mohebbi, K. Shakeri

Abstract:

In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.

Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452