Search results for: energy simulation
5665 An Energy Consumption Study for a Malaysian University
Authors: Fu E. Tang
Abstract:
The increase in energy demand has raised concerns over adverse impacts on the environment from energy generation. It is important to understand the status of energy consumption for institutions such as Curtin Sarawak to ensure the sustainability of energy usage, and also to reduce its costs. In this study, a preliminary audit framework was developed and was conducted around the Malaysian campus to obtain information such as the number and specifications of electrical appliances, built-up area and ambient temperature to understand the relationship of these factors with energy consumption. It was found that the number and types of electrical appliances, population and activities in the campus impacted the energy consumption of Curtin Sarawak directly. However, the built-up area and ambient temperature showed no clear correlation with energy consumption. An investigation of the diurnal and seasonal energy consumption of the campus was also carried out. From the data, recommendations were made to improve the energy efficiency of the campus.Keywords: Energy audit, energy consumption, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41305664 A New Method for Extracting Ocean Wave Energy Utilizing the Wave Shoaling Phenomenon
Authors: Shafiq R. Qureshi, Syed Noman Danish, Muhammad Saeed Khalid
Abstract:
Fossil fuels are the major source to meet the world energy requirements but its rapidly diminishing rate and adverse effects on our ecological system are of major concern. Renewable energy utilization is the need of time to meet the future challenges. Ocean energy is the one of these promising energy resources. Threefourths of the earth-s surface is covered by the oceans. This enormous energy resource is contained in the oceans- waters, the air above the oceans, and the land beneath them. The renewable energy source of ocean mainly is contained in waves, ocean current and offshore solar energy. Very fewer efforts have been made to harness this reliable and predictable resource. Harnessing of ocean energy needs detail knowledge of underlying mathematical governing equation and their analysis. With the advent of extra ordinary computational resources it is now possible to predict the wave climatology in lab simulation. Several techniques have been developed mostly stem from numerical analysis of Navier Stokes equations. This paper presents a brief over view of such mathematical model and tools to understand and analyze the wave climatology. Models of 1st, 2nd and 3rd generations have been developed to estimate the wave characteristics to assess the power potential. A brief overview of available wave energy technologies is also given. A novel concept of on-shore wave energy extraction method is also presented at the end. The concept is based upon total energy conservation, where energy of wave is transferred to the flexible converter to increase its kinetic energy. Squeezing action by the external pressure on the converter body results in increase velocities at discharge section. High velocity head then can be used for energy storage or for direct utility of power generation. This converter utilizes the both potential and kinetic energy of the waves and designed for on-shore or near-shore application. Increased wave height at the shore due to shoaling effects increases the potential energy of the waves which is converted to renewable energy. This approach will result in economic wave energy converter due to near shore installation and more dense waves due to shoaling. Method will be more efficient because of tapping both potential and kinetic energy of the waves.Keywords: Energy Utilizing, Wave Shoaling Phenomenon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26775663 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Authors: Bakari M. M. Mwinyiwiwa
Abstract:
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.
Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43165662 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study
Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim
Abstract:
Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.
Keywords: Optimum energy systems, renewable energy sources, smart grid, micro-grid system, on- grid system, off-grid system, modeling and simulation, economical evaluation, net present value, cost of energy, environmental impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24385661 The Long-Term Effects of Using the Energy Box on Energy Poor Households in the Private Rental Sector in the Netherlands
Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen
Abstract:
This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.
Keywords: Energy-saving behavior, energy poverty, poverty, private rental sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4525660 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia
Authors: Hussain Ali Bekhet, Nor Hamisham Harun
Abstract:
The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36125659 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation
Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi
Abstract:
Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.
Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16175658 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia
Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein
Abstract:
This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.
Keywords: Energy efficiency, energy retrofitting, hot arid climate, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7405657 Application of CPN Tools for Simulation and Analysis of Bandwidth Allocation
Authors: Julija Asmuss, Gunars Lauks, Viktors Zagorskis
Abstract:
We consider the problem of bandwidth allocation in a substrate network as an optimization problem for the aggregate utility of multiple applications with diverse requirements and describe a simulation scheme for dynamically adaptive bandwidth allocation protocols. The proposed simulation model based on Coloured Petri Nets (CPN) is realized using CPN Tools.Keywords: Bandwidth Allocation Problem, Coloured Petri Nets, CPN Tools, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19805656 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range
Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini
Abstract:
This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.Keywords: Battery, electric vehicles EV, ultra-capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11245655 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9795654 Challenges and Opportunities in Nuclear Energy: Promising Option in Turkey?
Authors: I. Mahariq, I. Arpacı
Abstract:
Dramatic growth in the population requires a parallel increase in the total installed capacity of electricity. Diversity, independency of resources and global warming call for installing renewable and nuclear energy plants. Several types of energy plants exist in Turkey; however, nuclear energy with its several attractive features is not utilized at all. This study presents the available energy resources in Turkey and reviews major challenges and opportunities in nuclear energy. At the end of this paper, some conclusions are stated.
Keywords: Nuclear, energy resources, challenges, opportunities, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17545653 Remarks on Energy Based Control of a Nonlinear, Underactuated, MIMO and Unstable Benchmark
Authors: Guangyu Liu
Abstract:
In the last decade, energy based control theory has undergone a significant breakthrough in dealing with underactated mechanical systems with two successful and similar tools, controlled Lagrangians and controlled Hamiltanians (IDA-PBC). However, because of the complexity of these tools, successful case studies are lacking, in particular, MIMO cases. The seminal theoretical paper of controlled Lagrangians proposed by Bloch and his colleagues presented a benchmark example–a 4 d.o.f underactuated pendulum on a cart but a detailed and completed design is neglected. To compensate this ignorance, the note revisit their design idea by addressing explicit control functions for a similar device motivated by a vector thrust body hovering in the air. To the best of our knowledge, this system is the first MIMO, underactuated example that is stabilized by using energy based tools at the courtesy of the original design idea. Some observations are given based on computer simulation.
Keywords: Controlled Lagrangian, Energy Shaping, Spherical Inverted Pendulum, Controlled Hamiltonian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13835652 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology
Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian
Abstract:
Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.
Keywords: Energy in Buildings, Hardware in Loop, Modelica (Dymola), Monte Carlo Simulation, Uncertainty Propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5825651 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma
Abstract:
The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.Keywords: Atomic force microscopy, nanochannel, specific down force energy, Y shape, burr, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10875650 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON
Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup
Abstract:
Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.Keywords: Biomass, Gasification, Hydrogen, iCON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26115649 Providing Additional Advantages for STATCOM in Power Systems by Integration of Energy Storage Device
Authors: Reza Sedaghati
Abstract:
The use of Flexible AC Transmission System (FACTS) devices in a power system can potentially overcome limitations of the present mechanically controlled transmission system. Also, the advance of technology makes possible to include new energy storage devices in the electrical power system. The integration of Superconducting Magnetic Energy Storage (SMES) into Static Synchronous Compensator (STATCOM) can lead to increase their flexibility in improvement of power system dynamic behaviour by exchanging both active and reactive powers with power grids. This paper describes structure and behaviour of SMES, specifications and performance principles of the STATCOM/SMES compensator. Moreover, the benefits and effectiveness of integrated SMES with STATCOM in power systems is presented. Also, the performance of the STATCOM/SMES compensator is evaluated using an IEEE 3-bus system through the dynamic simulation by PSCAD/EMTDC software.Keywords: STATCOM/SMES compensator, chopper, converter, energy storage system, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33385648 An Integrated CFD and Experimental Analysis on Double-Skin Window
Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen
Abstract:
Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15235647 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications
Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar
Abstract:
Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.
Keywords: Boron Nitride Nanotube, Radiation Shielding, Young Modulus, Atomistic Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66865646 Impact of Reflectors on Solar Energy Systems
Authors: J. Rizk, M. H. Nagrial
Abstract:
The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve energy production by means of concentrating and intensifying more sunlight onto a solar cell. The Solar Intensifier unit is designed to increase efficiency and performance of a set of solar panels. The unit was fabricated and tested. The experimental results show good improvement in the performance of the solar energy system.Keywords: Renewable Energy, Power optimization, Solar Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32745645 Towards Achieving Energy Efficiency in Kazakhstan
Authors: Aigerim Uyzbayeva, Valeriya Tyo, Nurlan Ibrayev
Abstract:
Kazakhstan is currently one of the dynamically developing states in its region. The stable growth in all sectors of the economy leads to a corresponding increase in energy consumption. Thus country consumes significant amount of energy due to the high level of industrialisation and the presence of energy-intensive manufacturing such as mining and metallurgy which in turn leads to low energy efficiency. With allowance for this the Government has set several priorities to adopt a transition of Republic of Kazakhstan to a “green economy”. This article provides an overview of Kazakhstan’s energy efficiency situation in for the period of 1991- 2014. First, the dynamics of production and consumption of conventional energy resources are given. Second, the potential of renewable energy sources is summarised followed by the description of GHG emissions trends in the country. Third, Kazakhstan’ national initiatives, policies and locally implemented projects in the field of energy efficiency are described.
Keywords: Energy efficiency in Kazakhstan, greenhouse gases, renewable energy, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35415644 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Umez-Eronini
Abstract:
Compressed air energy storage (CAES) coupled with wind farms have gained attention as a means to address the intermittency and variability of wind power. However, most existing studies and implementations focus on bulk or centralized CAES plants. This study presents a dynamic model of a hybrid wind farm with distributed CAES, using air storage tanks and compressor and expander trains at each wind turbine station. It introduces the concept of a distributed CAES with linked air cooling and heating, and presents an approach to scheduling and regulating the production of compressed air and power in such a system. Mathematical models of the dynamic components of this hybrid wind farm system, including a simple transient wake field model, were developed and simulated using MATLAB, with real wind data and Transmission System Operator (TSO) absolute power reference signals as inputs. The simulation results demonstrate that the proposed ad hoc supervisory controller is able to track the minute-scale power demand signal within an error band size comparable to the electrical power rating of a single expander. This suggests that combining the global distributed CAES control with power regulation for individual wind turbines could further improve the system’s performance. The round trip electrical storage efficiency computed for the distributed CAES was also in the range of reported round trip storage electrical efficiencies for improved bulk CAES. These findings contribute to the enhancement of efficiency of wind farms without access to large-scale storage or underground caverns.
Keywords: Distributed CAES, compressed air, energy storage, hybrid wind farm, wind turbines, dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955643 Passive Ventilation System Analysis using Solar Chimney in South of Algeria
Authors: B. Belfuguais, S. Larbi
Abstract:
The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29315642 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications
Authors: Andrés Gomez-Casseres, Rubén Contreras
Abstract:
In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.Keywords: Average current control, boost converter, electrical tuning, energy harvesting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11165641 Potential of Energy Conservation of Daylight Linked Lighting System in India
Authors: Biswajit Biswas
Abstract:
Demand of energy is increasing faster than the generation. It leads shortage of power in all sectors of society. At peak hours this shortage is higher. Unless we utilize energy efficient technology, it is very difficult to minimize the shortage of energy. So energy efficiency program and energy conservation has an important role. Energy efficient technologies are cost intensive hence it is always not possible to implement in country like India. In the recent study, an educational building with operating hours from 10:00 a.m. to 05:00 p.m. has been selected to quantify the possibility of lighting energy conservation. As the operating hour is in daytime, integration of daylight with artificial lighting system will definitely reduce the lighting energy consumption. Moreover the initial investment has been given priority and hence the existing lighting installation was unaltered. An automatic controller has been designed which will be operated as a function of daylight through windows and the lighting system of the room will function accordingly. The result of the study of integrating daylight gave quite satisfactory for visual comfort as well as energy conservation.
Keywords: Lighting energy, energy efficiency, daylight, illumination, energy conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19635640 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability
Authors: K. Saravanan
Abstract:
An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14035639 Pathway to Reduce Industrial Energy Intensity for Energy Conservation at Chinese Provincial Level
Authors: Shengman Zhao, Yang Yu, Shenghui Cui
Abstract:
Using logarithmic mean Divisia decomposition technique, this paper analyzes the change in industrial energy intensity of Fujian Province in China, based on data sets of added value and energy consumption for 35 selected industrial sub-sectors from 1999 to 2009. The change in industrial energy intensity is decomposed into intensity effect and structure effect. Results show that the industrial energy intensity of Fujian Province has achieved a reduction of 51% over the past ten years. The structural change, a shift in the mix of industrial sub-sectors, made overwhelming contribution to the reduction. The impact of energy efficiency’s improvement was relatively small. However, the aggregate industrial energy intensity was very sensitive to both the changes in energy intensity and in production share of energy-intensive sub-sectors, such as production and supply of electric power, steam and hot water. Pathway to reduce industrial energy intensity for energy conservation in Fujian Province is proposed in the end.
Keywords: Decomposition analysis, energy intensity, Fujian Province, industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13965638 Modeling and Simulation of Utility Interfaced PV/Hydro Hybrid Electric Power System
Authors: P. V. V. Rama Rao, B. Kali Prasanna, Y. T. R. Palleswari
Abstract:
Renewable energy is derived from natural processes that are replenished constantly. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and bio-fuels and hydrogen derived from renewable resources. Each of these sources has unique characteristics which influence how and where they are used. This paper presents the modeling the simulation of solar and hydro hybrid energy sources in MATLAB/SIMULINK environment. It simulates all quantities of Hybrid Electrical Power system (HEPS) such as AC output current of the inverter that injected to the load/grid, load current, grid current. It also simulates power output from PV and Hydraulic Turbine Generator (HTG), power delivered to or from grid and finally power factor of the inverter for PV, HTG and grid. The proposed circuit uses instantaneous p-q (real-imaginary) power theory.
Keywords: Photovoltaic Array, Hydraulic Turbine Generator, Electrical Utility (EU), Hybrid Electrical Power Supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34995637 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide
Authors: M. Yusefzad
Abstract:
Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.
Keywords: Power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10595636 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System
Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan
Abstract:
With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.
Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017