Search results for: direction dependent mask
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1436

Search results for: direction dependent mask

1256 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays

Authors: Shu Lü, Shouming Zhong, Zixin Liu

Abstract:

In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1255 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1254 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation

Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo

Abstract:

Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.

Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
1253 Impact of the Existence of One-Way Functionson the Conceptual Difficulties of Quantum Measurements

Authors: Arkady Bolotin

Abstract:

One-way functions are functions that are easy to compute but hard to invert. Their existence is an open conjecture; it would imply the existence of intractable problems (i.e. NP-problems which are not in the P complexity class). If true, the existence of one-way functions would have an impact on the theoretical framework of physics, in particularly, quantum mechanics. Such aspect of one-way functions has never been shown before. In the present work, we put forward the following. We can calculate the microscopic state (say, the particle spin in the z direction) of a macroscopic system (a measuring apparatus registering the particle z-spin) by the system macroscopic state (the apparatus output); let us call this association the function F. The question is: can we compute the function F in the inverse direction? In other words, can we compute the macroscopic state of the system through its microscopic state (the preimage F -1)? In the paper, we assume that the function F is a one-way function. The assumption implies that at the macroscopic level the Schrödinger equation becomes unfeasible to compute. This unfeasibility plays a role of limit of the validity of the linear Schrödinger equation.

Keywords: One-way functions, P versus NP problem, quantummeasurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
1252 Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms

Authors: D.Toghraie, A.R.Azimian

Abstract:

Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.

Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD), Annular Flow Boiling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
1251 Epoxidized-Transesterified Cotton Seed Oil for Temperature-Dependent Austempering Process

Authors: R. M. Dodo, Z. Musa, K. A. Bello, U. Abdullahi, G. A. Faruna

Abstract:

Temperature dependent austempering of high carbon steel using epoxidized-transesterified cotton seed oil (ETO) was examined. Five sets of samples were heated to 850 oC and held for one hour and then quenched in an oil bath of ETO at 250 oC for one hour. The same procedure was performed on the remaining samples, which were austempered at 270 oC, 290 oC, 310 oC, and 330 oC. Next, mechanical property tests were conducted. The austempered samples were then analyzed for microstructure using a scanning electron microscope (SEM). The results indicate that tensile strength and hardness decrease with increasing temperature, while impact strength improved with rising temperature. It was observed that 270 oC is the best austempering temperature, as it produces austempered samples with the best combination of mechanical properties.

Keywords: Epoxidized-transesterified cotton seed oil, austempering temperature, high carbon steel, bainitic structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18
1250 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0^o/+45^o/-45^o/0^o] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP Composite Cylindrical Shell, Asymmetric Meshing Technique, Primary Buckling, Secondary Buckling, Linear Eigenvalue Analysis, Non-linear Riks Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
1249 Design of Multi-disease Diagnosis Processor using Hypernetworks Technique

Authors: Jae-Yeon Song, Seung-Yerl Lee, Kyu-Yeul Wang, Byung-Soo Kim, Sang-Seol Lee, Seong-Seob Shin, Jae-Young Choi, Chong Ho Lee, Jeahyun Park, Duck-Jin Chung

Abstract:

In this paper, we propose disease diagnosis hardware architecture by using Hypernetworks technique. It can be used to diagnose 3 different diseases (SPECT Heart, Leukemia, Prostate cancer). Generally, the disparate diseases require specified diagnosis hardware model for each disease. Using similarities of three diseases diagnosis processor, we design diagnosis processor that can diagnose three different diseases. Our proposed architecture that is combining three processors to one processor can reduce hardware size without decrease of the accuracy.

Keywords: Diagnosis processor, Hypernetworks, Leukemia, Mask, Prostate cancer, SPECT Heart data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
1248 The Performance Improvement of the Target Position Determining System in Laser Tracking Based on 4Q Detector using Neural Network

Authors: A. Salmanpour, Sh. Mohammad Nejad

Abstract:

One of the methods for detecting the target position error in the laser tracking systems is using Four Quadrant (4Q) detectors. If the coordinates of the target center is yielded through the usual relations of the detector outputs, the results will be nonlinear, dependent on the shape, target size and its position on the detector screen. In this paper we have designed an algorithm with using neural network that coordinates of the target center in laser tracking systems is calculated by using detector outputs obtained from visual modeling. With this method, the results except from the part related to the detector intrinsic limitation, are linear and dependent from the shape and target size.

Keywords: four quadrant detector, laser tracking system, rangefinder, tracking sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
1247 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
1246 Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Inclined Open Ended Cavity

Authors: M.Jafari, A.Naysari, K.Bodaghi

Abstract:

In the present study, the lattice Boltzmann Method (LBM) is applied for simulating of Natural Convection in an inclined open ended cavity. The cavity horizontal walls are insulated while the west wall is maintained at a uniform temperature higher than the ambient. Prandtl number is fixed to 0.71 (air) while Rayligh numbers, aspect ratio of the cavity are changed in the range of 103 to 104 and of 1-4, respectively. The numerical code is validated for the previously results for open ended cavities, and then the results of an inclined open ended cavity for various angles of rotating open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number on hot wall decreases for all rotation angles. When gravity acceleration direction is opposite of standard gravity direction the convection heat transfer has a manner same as conduction.

Keywords: Lattice Boltzmann Method, Open Ended Cavity, Natural Convection, Inclined Cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1245 Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains

Authors: M. Qorbani

Abstract:

Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection.

Keywords: Neuromuscular response, sEMG, Lateral Ankle Sprain, posture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1244 Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel

Authors: Rubén Bãnos, José Arcos, Oscar Bautista, Federico Méndez

Abstract:

The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H¨uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Reω, the electrokinetic parameter, ¯κ, defined as the ratio of the characteristic length scale to the Debye length, the parameter λ which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Reω and ¯κ are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers.

Keywords: Oscillatory electroosmotic flow, Non-Newtonian fluids, power-law model, low zeta potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
1243 Hand Gesture Recognition using Blob Detection for Immersive Projection Display System

Authors: Hasup Lee, Yoshisuke Tateyama, Tetsuro Ogi

Abstract:

We developed a vision interface immersive projection system, CAVE in virtual rea using hand gesture recognition with computer vis background image was subtracted from current webcam and we convert the color space of the imag Then we mask skin regions using skin color range t a noise reduction operation. We made blobs fro gestures were recognized using these blobs. Using recognition, we could implement an effective bothering devices for CAVE. e framework for an reality research field vision techniques. ent image frame age into HSV space. e threshold and apply from the image and ing our hand gesture e interface without

Keywords: CAVE, Computer Vision, Ges Virtual Reality esture Recognition,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
1242 Improving Image Segmentation Performance via Edge Preserving Regularization

Authors: Ying-jie Zhang, Li-ling Ge

Abstract:

This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.

Keywords: Energy minimization, image segmentation, level sets, edge regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1241 A New Approach for Counting Passersby Utilizing Space-Time Images

Authors: A. Elmarhomy, S. Karungaru, K. Terada

Abstract:

Understanding the number of people and the flow of the persons is useful for efficient promotion of the institution managements and company-s sales improvements. This paper introduces an automated method for counting passerby using virtualvertical measurement lines. The process of recognizing a passerby is carried out using an image sequence obtained from the USB camera. Space-time image is representing the human regions which are treated using the segmentation process. To handle the problem of mismatching, different color space are used to perform the template matching which chose automatically the best matching to determine passerby direction and speed. A relation between passerby speed and the human-pixel area is used to distinguish one or two passersby. In the experiment, the camera is fixed at the entrance door of the hall in a side viewing position. Finally, experimental results verify the effectiveness of the presented method by correctly detecting and successfully counting them in order to direction with accuracy of 97%.

Keywords: counting passersby, virtual-vertical measurement line, passerby speed, space-time image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
1240 Experimental Study on Slicing of Sapphire with Fixed Abrasive Diamond Wire Saw

Authors: Mengjun Zhang, Yuli Sun, Dunwen Zuo, Chunxiang Xie, Chunming Zhang

Abstract:

Experimental study on slicing of sapphire with fixed abrasive diamond wire saw was conducted in this paper. The process parameters were optimized through orthogonal experiment of three factors and four levels. The effects of wire speed, feed speed and tension pressure on the surface roughness were analyzed. Surface roughness in cutting direction and feed direction were both detected. The results show that feed speed plays the most significant role on the surface roughness of sliced sapphire followed by wire speed and tension pressure. The optimized process parameters are as follows: wire speed 1.9 m/s, feed speed 0.187 mm/min and tension pressure 0.18 MPa. In the end, the results were verified by analysis of variance.

Keywords: Fixed abrasive, diamond wire saw, slicing, sapphire, orthogonal experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
1239 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins

Authors: Mohammad R. Jalali, Mohammad M. Jalali

Abstract:

The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.

Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1238 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang

Abstract:

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Keywords: ­H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1237 Distance Transmission Line Protection Based on Radial Basis Function Neural Network

Authors: Anant Oonsivilai, Sanom Saichoomdee

Abstract:

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Keywords: radial basis function neural network, transmission lines protection, relaying, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
1236 Free Vibration Analysis of Smart FGM Plates

Authors: F.Ebrahimi, A.Rastgo

Abstract:

Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.

Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
1235 Evaluation of Multilevel Modulation Formats for 100Gbps Transmission with Direct Detection

Authors: Majed Omar Al-Dwairi

Abstract:

This paper evaluate the multilevel modulation for different techniques such as amplitude shift keying (M-ASK), MASK, differential phase shift keying (M-ASK-Bipolar), Quaternary Amplitude Shift Keying (QASK) and Quaternary Polarization-ASK (QPol-ASK) at a total bit rate of 107 Gbps. The aim is to find a costeffective very high speed transport solution. Numerical investigation was performed using Monte Carlo simulations. The obtained results indicate that some modulation formats can be operated at 100Gbps in optical communication systems with low implementation effort and high spectral efficiency.

Keywords: Optical communication, multilevel amplitude shift keying (M-ASK), Differential phase shift keying (DPSK), Quaternary Amplitude Shift Keying (QASK), Quaternary Polarization-ASK (QPol-ASK).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
1234 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods

Authors: C. Kalamani, K. Paramasivam

Abstract:

In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.

Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
1233 Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation

Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang

Abstract:

In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.

Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
1232 Anisotropic Shear Strength of Sand Containing Plastic Fine Materials

Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz

Abstract:

Anisotropy is one of the major aspects that affect soil behavior, and extensive efforts have investigated its effect on the mechanical properties of soil. However, very little attention has been given to the combined effect of anisotropy and fine contents. Therefore, in this paper, the anisotropic strength of sand containing different fine content (F) of 5%, 10%, 15%, and 20%, was investigated using hollow cylinder tests under different principal stress directions of α = 0° and α = 90°. For a given principal stress direction (α), it was found that increasing fine content resulted in decreasing deviator stress (q). Moreover, results revealed that all fine contents showed anisotropic strength where there is a clear difference between the strength under 0° and the strength under 90°. This anisotropy was greatest under F = 5% while it decreased with increasing fine contents, particularly at F = 10%. Mixtures with low fine content show low contractive behavior and tended to show more dilation. Moreover, all sand-clay mixtures exhibited less dilation and more compression at α = 90° compared with that at α = 0°.

Keywords: Anisotropy, principal stress direction, fine content, hollow cylinder sample.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
1231 Land Subsidence and Fissuring Due to Ground Water Withdrawal in Yazd-Ardakan Basin, Central Iran

Authors: Eslamizadeh, Azat., Samanirad, Shahram

Abstract:

The Yazd-Ardakan basin in Central Iran has two separated aquifers. The shallow unconfined aquifer is supplies 40 Qanats. The deep saturated confined aquifer is the main water storage. Due to over-withdrawal, water table has been decreasing during last 25 years. Recent study shows that the shortage of the aquifer is about 16 meters and land subsidence is 0.5 - 1.2 meters. Long deep cracks are found just above the aquifer and devour the irrigation water and floods. Although the most cracks direction is NW-SE and could be compared to the main direction of YA basin, there is no direct evidence for relation between land subsidence and the huge cracks. Large-scale water pumping has been decreased the water pressure in aquifer. The pressure decline disturbed the balance and increased the pressure of overlying sediments. So porosity decreased and compaction started. Then, sediments compaction developed and made land subsidence and some huge cracks slowly.

Keywords: Land subsidence, Iran, Yazd, aquifer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1230 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties

Authors: M. A. Nozari, R. Ziaie Moayed

Abstract:

Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.

Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
1229 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

Authors: Hamid A. Jalab, Rabha W. Ibrahim

Abstract:

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

Keywords: Fractional calculus, fractional differential operator, fractional mask, fractional filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
1228 A Robust Image Watermarking Scheme using Image Moment Normalization

Authors: Latha Parameswaran, K. Anbumani

Abstract:

Multimedia security is an incredibly significant area of concern. A number of papers on robust digital watermarking have been presented, but there are no standards that have been defined so far. Thus multimedia security is still a posing problem. The aim of this paper is to design a robust image-watermarking scheme, which can withstand a different set of attacks. The proposed scheme provides a robust solution integrating image moment normalization, content dependent watermark and discrete wavelet transformation. Moment normalization is useful to recover the watermark even in case of geometrical attacks. Content dependent watermarks are a powerful means of authentication as the data is watermarked with its own features. Discrete wavelet transforms have been used as they describe image features in a better manner. The proposed scheme finds its place in validating identification cards and financial instruments.

Keywords: Watermarking, moments, wavelets, content-based, benchmarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
1227 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589