Search results for: Data representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7853

Search results for: Data representation

7673 A Cumulative Learning Approach to Data Mining Employing Censored Production Rules (CPRs)

Authors: Rekha Kandwal, Kamal K.Bharadwaj

Abstract:

Knowledge is indispensable but voluminous knowledge becomes a bottleneck for efficient processing. A great challenge for data mining activity is the generation of large number of potential rules as a result of mining process. In fact sometimes result size is comparable to the original data. Traditional data mining pruning activities such as support do not sufficiently reduce the huge rule space. Moreover, many practical applications are characterized by continual change of data and knowledge, thereby making knowledge voluminous with each change. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. Michalski & Winston proposed Censored Production Rules (CPRs), as an extension of production rules, that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence, are tight or there is simply no information available as to whether it holds or not. Thus the 'If P Then D' part of the CPR expresses important information while the Unless C part acts only as a switch changes the polarity of D to ~D. In this paper a scheme based on Dempster-Shafer Theory (DST) interpretation of a CPR is suggested for discovering CPRs from the discovered flat PRs. The discovery of CPRs from flat rules would result in considerable reduction of the already discovered rules. The proposed scheme incrementally incorporates new knowledge and also reduces the size of knowledge base considerably with each episode. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested cumulative learning scheme would be useful in mining data streams.

Keywords: Censored production rules, cumulative learning, data mining, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
7672 Power and Delay Optimized Graph Representation for Combinational Logic Circuits

Authors: Padmanabhan Balasubramanian, Karthik Anantha

Abstract:

Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.

Keywords: AND-Inverter Graph, OR-Inverter Graph, DirectedAcyclic Graph, Low power design, Delay optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
7671 GIS-based Approach for Land-Use Analysis: A Case Study

Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.

Abstract:

Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.

Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
7670 Identifying Missing Component in the Bechdel Test Using Principal Component Analysis Method

Authors: Raghav Lakhotia, Chandra Kanth Nagesh, Krishna Madgula

Abstract:

A lot has been said and discussed regarding the rationale and significance of the Bechdel Score. It became a digital sensation in 2013, when Swedish cinemas began to showcase the Bechdel test score of a film alongside its rating. The test has drawn criticism from experts and the film fraternity regarding its use to rate the female presence in a movie. The pundits believe that the score is too simplified and the underlying criteria of a film to pass the test must include 1) at least two women, 2) who have at least one dialogue, 3) about something other than a man, is egregious. In this research, we have considered a few more parameters which highlight how we represent females in film, like the number of female dialogues in a movie, dialogue genre, and part of speech tags in the dialogue. The parameters were missing in the existing criteria to calculate the Bechdel score. The research aims to analyze 342 movies scripts to test a hypothesis if these extra parameters, above with the current Bechdel criteria, are significant in calculating the female representation score. The result of the Principal Component Analysis method concludes that the female dialogue content is a key component and should be considered while measuring the representation of women in a work of fiction.

Keywords: Bechdel test, dialogue genre, parts of speech tags, principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
7669 Fish Locomotion for Innovative Marine Propulsion Systems

Authors: Omar B. Yaakob, Yasser M. Ahmed, Ahmad F. Said

Abstract:

There is an essential need for obtaining the mathematical representation of fish body undulations, which can be used for designing and building new innovative types of marine propulsion systems with less environmental impact. This research work presents a case study to derive the mathematical model for fish body movement. Observation and capturing image methods were used in this study in order to obtain a mathematical representation of Clariasbatrachus fish (catfish). An experiment was conducted by using an aquarium with dimension 0.609 m x 0.304 m x 0.304 m, and a 0.5 m ruler was attached at the base of the aquarium. Progressive Scan Monochrome Camera was positioned at 1.8 m above the base of the aquarium to provide swimming sequences. Seven points were marked on the fish body using white marker to indicate the fish movement and measuring the amplitude of undulation. Images from video recordings (20 frames/s) were analyzed frame by frame using local coordinate system, with time interval 0.05 s. The amplitudes of undulations were obtained for image analysis from each point that has been marked on fish body. A graph of amplitude of undulations versus time was plotted by using computer to derive a mathematical fit. The function for the graph is polynomial with nine orders.

Keywords: Fish locomotion, body undulation, steady and unsteady swimming modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
7668 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
7667 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 557
7666 A Novel Approach to Improve Users Search Goal in Web Usage Mining

Authors: R. Lokeshkumar, P. Sengottuvelan

Abstract:

Web mining is to discover and extract useful Information. Different users may have different search goals when they search by giving queries and submitting it to a search engine. The inference and analysis of user search goals can be very useful for providing an experience result for a user search query. In this project, we propose a novel approach to infer user search goals by analyzing search web logs. First, we propose a novel approach to infer user search goals by analyzing search engine query logs, the feedback sessions are constructed from user click-through logs and it efficiently reflect the information needed for users. Second we propose a preprocessing technique to clean the unnecessary data’s from web log file (feedback session). Third we propose a technique to generate pseudo-documents to representation of feedback sessions for clustering. Finally we implement k-medoids clustering algorithm to discover different user search goals and to provide a more optimal result for a search query based on feedback sessions for the user.

Keywords: Data Preprocessing, Session Identification, Web log mining, Web Personalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
7665 Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

Authors: Stefan Menzel

Abstract:

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.

Keywords: Design decomposition, topographic non-negative matrix factorization, parts-based representation, self-organization, unsupervised feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
7664 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
7663 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 262
7662 Double Reduction of Ada-ECATNet Representation using Rewriting Logic

Authors: Noura Boudiaf, Allaoua Chaoui

Abstract:

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets [2] are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic [12] and its programming language Maude [13]. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems. We proposed in [4] a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet). In this paper, we show that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets (CPNs). Such translation doesn-t reduce only the size of program, but reduces also the number of program states. We show also, how this compact Ada-ECATNet may be reduced again by applying reduction rules on it. This double reduction of Ada-ECATNet permits a considerable minimization of the memory space and run time of corresponding Maude program.

Keywords: Ada tasking, ECATNets, Algebraic Petri Nets, Compact Representation, Analysis, Rewriting Logic, Maude.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
7661 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
7660 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching

Authors: Weitao Lin

Abstract:

To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.

Keywords: Natural Language Processing, Chinese event detection, rules matching, dependency parsing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180
7659 Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism

Authors: Jehad Al Dallal

Abstract:

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.

Keywords: Backward slicing, cohesion measure, forward slicing, parallelism measure, program dependence graph, program slicing, static slicing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
7658 A Survey of Various Algorithms for Vlsi Physical Design

Authors: Rajine Swetha R, B. Shekar Babu, Sumithra Devi K.A

Abstract:

Electronic Systems are the core of everyday lives. They form an integral part in financial networks, mass transit, telephone systems, power plants and personal computers. Electronic systems are increasingly based on complex VLSI (Very Large Scale Integration) integrated circuits. Initial electronic design automation is concerned with the design and production of VLSI systems. The next important step in creating a VLSI circuit is Physical Design. The input to the physical design is a logical representation of the system under design. The output of this step is the layout of a physical package that optimally or near optimally realizes the logical representation. Physical design problems are combinatorial in nature and of large problem sizes. Darwin observed that, as variations are introduced into a population with each new generation, the less-fit individuals tend to extinct in the competition of basic necessities. This survival of fittest principle leads to evolution in species. The objective of the Genetic Algorithms (GA) is to find an optimal solution to a problem .Since GA-s are heuristic procedures that can function as optimizers, they are not guaranteed to find the optimum, but are able to find acceptable solutions for a wide range of problems. This survey paper aims at a study on Efficient Algorithms for VLSI Physical design and observes the common traits of the superior contributions.

Keywords: Genetic Algorithms, Physical Design, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
7657 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.

Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465
7656 Face Detection using Gabor Wavelets and Neural Networks

Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani

Abstract:

This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.

Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
7655 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
7654 Analyses of Socio-Cognitive Identity Styles by Slovak Adolescents

Authors: Blandína Šramová, Gabriel Bianchi, Barbara Lášticová, Katarína Fichnová, Anežka Hamranová

Abstract:

The contribution deals with analysis of identity style at adolescents (N=463) at the age from 16 to 19 (the average age is 17,7 years). We used the Identity Style Inventory by Berzonsky, distinguishing three basic, measured identity styles: informational, normative, diffuse-avoidant identity style and also commitment. The informational identity style influencing on personal adaptability, coping strategies, quality of life and the normative identity style, it means the style in which an individual takes on models of authorities at self-defining were found to have the highest representation in the studied group of adolescents by higher scores at girls in comparison with boys. The normative identity style positively correlates with the informational identity style. The diffuse-avoidant identity style was found to be positively associated with maladaptive decisional strategies, neuroticism and depressive reactions. There is the style, in which the individual shifts aside defining his personality. In our research sample the lowest score represents it and negatively correlates with commitment, it means with coping strategies, thrust in oneself and the surrounding world. The age of adolescents did not significantly differentiate representation of identity style. We were finding the model, in which informational and normative identity style had positive relationship and the informational and diffuseavoidant style had negative relationship, which were determinated with commitment. In the same time the commitment is influenced with other outside factors.

Keywords: Identity Style Inventory, Informational IdentityStyle, Normative Identity Style, Diffuse-Avoidant Style, IdentityCommitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
7653 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
7652 Modeling and Optimization of Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

 This paper deals with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system’s efficiency and productivity. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
7651 On Generalized New Class of Matrix Polynomial Set

Authors: Ghazi S. Kahmmash

Abstract:

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
7650 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: Hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
7649 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization

Authors: M. F. Zaiyadi, B. Baharudin

Abstract:

Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.

Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
7648 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4882
7647 Impact of Computer-Mediated Communication on Virtual Teams- Performance: An Empirical Study

Authors: Nadeem Ehsan, Ebtisam Mirza, Muhammad Ahmad

Abstract:

In a complex project environment, project teams face multi-dimensional communication problems that can ultimately lead to project breakdown. Team Performance varies in Face-to-Face (FTF) environment versus groups working remotely in a computermediated communication (CMC) environment. A brief review of the Input_Process_Output model suggested by James E. Driskell, Paul H. Radtke and Eduardo Salas in “Virtual Teams: Effects of Technological Mediation on Team Performance (2003)", has been done to develop the basis of this research. This model theoretically analyzes the effects of technological mediation on team processes, such as, cohesiveness, status and authority relations, counternormative behavior and communication. An empirical study described in this paper has been undertaken to test the “cohesiveness" of diverse project teams in a multi-national organization. This study uses both quantitative and qualitative techniques for data gathering and analysis. These techniques include interviews, questionnaires for data collection and graphical data representation for analyzing the collected data. Computer-mediated technology may impact team performance because of difference in cohesiveness among teams and this difference may be moderated by factors, such as, the type of communication environment, the type of task and the temporal context of the team. Based on the reviewed model, sets of hypotheses are devised and tested. This research, reports on a study that compared team cohesiveness among virtual teams using CMC and non-CMC communication mediums. The findings suggest that CMC can help virtual teams increase team cohesiveness among their members, making CMC an effective medium for increasing productivity and team performance.

Keywords: Computer-mediated Communication, Virtual Teams, Team Performance, Team Cohesiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
7646 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, Wang Qun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSql), and gives 6 data cleaning methods based on these algorithms.

Keywords: Data cleaning, dependency rules, violation data discovery, data repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
7645 Potential of Detailed Environmental Data Produced by Information and Communication Technology Tools for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility

Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić

Abstract:

Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.

Keywords: Information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
7644 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: Simulation, visual navigation, mobile robot, data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051