Search results for: simple shear test
2364 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33032363 Solar Architecture of Low-Energy Buildings for Industrial Applications
Authors: P. Brinks, O. Kornadt, R. Oly
Abstract:
This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly energy saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.
Keywords: Solar Architecture, Passive Solar Building Design, Glazing, Low-Energy Buildings, Industrial Buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19842362 Hardware Implementation of Stack-Based Replacement Algorithms
Authors: Hassan Ghasemzadeh, Sepideh Mazrouee, Hassan Goldani Moghaddam, Hamid Shojaei, Mohammad Reza Kakoee
Abstract:
Block replacement algorithms to increase hit ratio have been extensively used in cache memory management. Among basic replacement schemes, LRU and FIFO have been shown to be effective replacement algorithms in terms of hit rates. In this paper, we introduce a flexible stack-based circuit which can be employed in hardware implementation of both LRU and FIFO policies. We propose a simple and efficient architecture such that stack-based replacement algorithms can be implemented without the drawbacks of the traditional architectures. The stack is modular and hence, a set of stack rows can be cascaded depending on the number of blocks in each cache set. Our circuit can be implemented in conjunction with the cache controller and static/dynamic memories to form a cache system. Experimental results exhibit that our proposed circuit provides an average value of 26% improvement in storage bits and its maximum operating frequency is increased by a factor of twoKeywords: Cache Memory, Replacement Algorithms, LeastRecently Used Algorithm, First In First Out Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34422361 Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb
Authors: Alaoui Hamza, Moutacalli Mohamed Tarik, Chebak Ahmed
Abstract:
The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process.Keywords: Ability of normal walking, exoskeleton, hemiplegic patients, lower limb motion, mechatronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6542360 Modeling Biology Inspired Reactive Agents Using X-machines
Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris
Abstract:
Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.
Keywords: Biology inspired agent, formal methods, x-machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15072359 Curing Time Effect on Behavior of Cement Treated Marine Clay
Authors: H. W. Xiao, F. H. Lee
Abstract:
Cement stabilization has been widely used for improving the strength and stiffness of soft clayey soils. Cement treated soil specimens used to investigate the stress-strain behaviour in the laboratory study are usually cured for 7 days. This paper examines the effects of curing time on the strength and stress strain behaviour of cement treated marine clay under triaxial loading condition. Laboratory-prepared cement treated Singapore marine clay with different mix proportion S-C-W (soil solid-cement solid-water) and curing time (7 days to 180 days) was investigated through conducting unconfined compressive strength test and triaxial test. The results show that the curing time has a significant effect on the unconfined compressive strength u q , isotropic compression behaviour and stress strain behaviour. Although the primary yield loci of the cement treated soil specimens with the same mix proportion expand with curing time, they are very narrowly banded and have nearly the same shape after being normalized by isotropic compression primary stress ' py p . The isotropic compression primary yield stress ' py p was shown to be linearly related to unconfined compressive strength u q for specimens with different curing time and mix proportion. The effect of curing time on the hardening behaviour will diminish with consolidation stress higher than isotropic compression primary yield stress but its damping rate is dependent on the cement content.Keywords: Cement treated soil, curing time effect, hardening behaviour, isotropic compression primary yield stress, unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39112358 Tobephobia: Teachers- Ineptitude to Manage Curriculum Change
Authors: P. Singh
Abstract:
In this paper, Tobephobia (TBP) alludes to the fear of failure experienced by teachers to manage curriculum change. TBP is an emerging concept and it extends the boundaries of research in terms of how we view achievement and failure in education. Outcomes-based education (OBE) was introduced fifteen years ago in South African schools without simultaneously upgrading teachers- professional competencies. This exploratory research, therefore examines a simple question: What is the impact of TBP and OBE on teachers? Teacher ineptitude to cope with the OBE curriculum in the classroom is a serious problem affecting large numbers of South African teachers. This exploratory study sought to determine the perceived negative impact of OBE and TBP on teachers. A survey was conducted amongst 311 teachers in Port Elizabeth and Durban, South Africa. The results confirm the very negative impact of TBP and OBE on teachers. This exploratory study authenticates the existence of TBP.Keywords: Curriculum change, fear of failure in education, outcomes-based education, Tobephobia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21332357 ANN Models for Microstrip Line Synthesis and Analysis
Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy
Abstract:
Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21512356 Neural Network Evaluation of FRP Strengthened RC Buildings Subjected to Near-Fault Ground Motions having Fling Step
Authors: Alireza Mortezaei, Kimia Mortezaei
Abstract:
Recordings from recent earthquakes have provided evidence that ground motions in the near field of a rupturing fault differ from ordinary ground motions, as they can contain a large energy, or “directivity" pulse. This pulse can cause considerable damage during an earthquake, especially to structures with natural periods close to those of the pulse. Failures of modern engineered structures observed within the near-fault region in recent earthquakes have revealed the vulnerability of existing RC buildings against pulse-type ground motions. This may be due to the fact that these modern structures had been designed primarily using the design spectra of available standards, which have been developed using stochastic processes with relatively long duration that characterizes more distant ground motions. Many recently designed and constructed buildings may therefore require strengthening in order to perform well when subjected to near-fault ground motions. Fiber Reinforced Polymers are considered to be a viable alternative, due to their relatively easy and quick installation, low life cycle costs and zero maintenance requirements. The objective of this paper is to investigate the adequacy of Artificial Neural Networks (ANN) to determine the three dimensional dynamic response of FRP strengthened RC buildings under the near-fault ground motions. For this purpose, one ANN model is proposed to estimate the base shear force, base bending moments and roof displacement of buildings in two directions. A training set of 168 and a validation set of 21 buildings are produced from FEA analysis results of the dynamic response of RC buildings under the near-fault earthquakes. It is demonstrated that the neural network based approach is highly successful in determining the response.
Keywords: Seismic evaluation, FRP, neural network, near-fault ground motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17392355 A Thought on Exotic Statistical Distributions
Authors: R K Sinha
Abstract:
The statistical distributions are modeled in explaining nature of various types of data sets. Although these distributions are mostly uni-modal, it is quite common to see multiple modes in the observed distribution of the underlying variables, which make the precise modeling unrealistic. The observed data do not exhibit smoothness not necessarily due to randomness, but could also be due to non-randomness resulting in zigzag curves, oscillations, humps etc. The present paper argues that trigonometric functions, which have not been used in probability functions of distributions so far, have the potential to take care of this, if incorporated in the distribution appropriately. A simple distribution (named as, Sinoform Distribution), involving trigonometric functions, is illustrated in the paper with a data set. The importance of trigonometric functions is demonstrated in the paper, which have the characteristics to make statistical distributions exotic. It is possible to have multiple modes, oscillations and zigzag curves in the density, which could be suitable to explain the underlying nature of select data set.Keywords: Exotic Statistical Distributions, Kurtosis, Mixture Distributions, Multi-modal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16272354 Tuning Cubic Equations of State for Supercritical Water Applications
Authors: Shyh-Ming Chern
Abstract:
Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.
Keywords: Equation of state, EoS, supercritical water, SCW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262353 The Design of Safe Spaces in Healthcare Facilities Vulnerable to Tornado Impact in Central US
Authors: Lucy Ampaw-Asiedu, Terri R. Norton
Abstract:
In the wake of recent disasters happening around the world such as earthquake in Italy (January, 2017); hurricanes in the United States (US) (September 2016 and September 2017); and compounding disasters in Haiti (September 2010 and September 2016); to our best knowledge, never has the world seen the need to work on preemptive rather than reactionary measures to salvage this situation than now. Tornadoes are natural hazards that mostly affect mid-western and central states in the US. Tornadoes, like all natural hazards such as hurricanes, earthquakes, floods and others, are very destructive and result in massive destruction to homes, cause billions of dollars in damage and claims many lives. Healthcare facilities in general are vulnerable to disasters, and therefore, the safety of patients, health workers and those who come in to seek shelter should be a priority. The focus of this study is to assess disaster management measures instituted by healthcare facilities. Thus, the sole aim of the study is to examine the vulnerabilities and the design of safe spaces in healthcare facilities in Central US. Objectives that guide the study are to primarily identify the impacts of tornadoes in hospitals and to assess the structural design or specifications of safe spaces. St. John’s Regional Medical Center, now Mercy Hospital in Joplin, is used as a case study. Preliminary results show that the lateral base shear of the proposed design to be 684.24 ton (1508.49kip) for the safe space. Findings from this work will be used to make recommendations about the design of safe spaces for health care facilities in Central US.
Keywords: Disaster management, safe spaces, structural design, tornado, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11282352 Effect of Two Different Biochars on Germination and Seedlings Growth of Salad, Cress and Barley
Authors: L. Bouqbis, H.W. Koyro, M. C. Harrouni, S. Daoud, L. F. Z. Ainlhout, C. I. Kammann
Abstract:
The application of biochar to soils is becoming more and more common. Its application which is generally reported to improve the physical, chemical, and biological properties of soils, has an indirect effect on soil health and increased crop yields. However, many of the previous results are highly variable and dependent mainly on the initial soil properties, biochar characteristics, and production conditions. In this study, two biochars which are biochar II (BC II) derived from a blend of paper sludge and wheat husks and biochar 005 (BC 005) derived from sewage sludge with a KCl additive, are used, and the physical and chemical properties of BC II are characterized. To determine the potential impact of salt stress and toxic and volatile substances, the second part of this study focused on the effect biochars have on germination of salad (Lactuca sativa L.), barley (Hordeum vulgare), and cress (Lepidium sativum) respectively. Our results indicate that Biochar II showed some unique properties compared to the soil, such as high EC, high content of K, Na, Mg, and low content of heavy metals. Concerning salad and barley germination test, no negative effect of BC II and BC 005 was observed. However, a negative effect of BC 005 at 8% level was revealed. The test of the effect of volatile substances on germination of cress revealed a positive effect of BC II, while a negative effect was observed for BC 005. Moreover, the water holding capacities of biochar-sand mixtures increased with increasing biochar application. Collectively, BC II could be safely used for agriculture and could provide the potential for a better plant growth.Keywords: Biochar, phytotoxic tests, seedlings growth, water holding capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10812351 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.Keywords: Earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7812350 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea
Authors: Woo Young Jung, Bu Seog Ju
Abstract:
This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.Keywords: Bridge, Finite Element, 3D model, Earthquake, Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412349 Face Reconstruction and Camera Pose Using Multi-dimensional Descent
Authors: Varin Chouvatut, Suthep Madarasmi, Mihran Tuceryan
Abstract:
This paper aims to propose a novel, robust, and simple method for obtaining a human 3D face model and camera pose (position and orientation) from a video sequence. Given a video sequence of a face recorded from an off-the-shelf digital camera, feature points used to define facial parts are tracked using the Active- Appearance Model (AAM). Then, the face-s 3D structure and camera pose of each video frame can be simultaneously calculated from the obtained point correspondences. This proposed method is primarily based on the combined approaches of Gradient Descent and Powell-s Multidimensional Minimization. Using this proposed method, temporarily occluded point including the case of self-occlusion does not pose a problem. As long as the point correspondences displayed in the video sequence have enough parallax, these missing points can still be reconstructed.
Keywords: Camera Pose, Face Reconstruction, Gradient Descent, Powell's Multidimensional Minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15842348 Design of an Authentication Protocol for Secure Electronic Seals
Authors: Seongsoo Park, Mun-Kyu Lee, Dong Kyue Kim, Kunsoo Park, Yousung Kang, Sokjoon Lee, Howon Kim, Kyoil Chung
Abstract:
Electronic seal is an electronic device to check the authenticity and integrity of freight containers at the point of arrival. While RFID-based eSeals are gaining more acceptances and there are also some standardization processes for these devices, a recent research revealed that the current RFID-based eSeals are vulnerable to various attacks. In this paper, we provide a feasible solution to enhance the security of active RFID-based eSeals. Our approach is to use an authentication and key agreement protocol between eSeal and reader device, enabling data encryption and integrity check. Our protocol is based on the use of block cipher AES, which is reasonable since a block cipher can also be used for many other security purposes including data encryption and pseudo-random number generation. Our protocol is very simple, and it is applicable to low-end active RFID eSeals.Keywords: Authentication, Container Security, Electronic seal, RFID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19012347 How Prior Knowledge Affects User's Understanding of System Requirements?
Authors: Balsam Mustafa, Safaai Deris
Abstract:
Requirements are critical to system validation as they guide all subsequent stages of systems development. Inadequately specified requirements generate systems that require major revisions or cause system failure entirely. Use Cases have become the main vehicle for requirements capture in many current Object Oriented (OO) development methodologies, and a means for developers to communicate with different stakeholders. In this paper we present the results of a laboratory experiment that explored whether different types of use case format are equally effective in facilitating high knowledge user-s understanding. Results showed that the provision of diagrams along with the textual use case descriptions significantly improved user comprehension of system requirements in both familiar and unfamiliar application domains. However, when comparing groups that received models of textual description accompanied with diagrams of different level of details (simple and detailed) we found no significant difference in performance.
Keywords: Prior knowledge, requirement specification, usecase format, user understanding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12392346 Adaptive Fuzzy Routing in Opportunistic Network (AFRON)
Authors: Payam Nabhani, Sima Radmanesh
Abstract:
Opportunistic network is a kind of Delay Tolerant Networks (DTN) where the nodes in this network come into contact with each other opportunistically and communicate wirelessly and, an end-to-end path between source and destination may have never existed, and disconnection and reconnection is common in the network. In such a network, because of the nature of opportunistic network, perhaps there is no a complete path from source to destination for most of the time and even if there is a path; the path can be very unstable and may change or break quickly. Therefore, routing is one of the main challenges in this environment and, in order to make communication possible in an opportunistic network, the intermediate nodes have to play important role in the opportunistic routing protocols. In this paper we proposed an Adaptive Fuzzy Routing in opportunistic network (AFRON). This protocol is using the simple parameters as input parameters to find the path to the destination node. Using Message Transmission Count, Message Size and Time To Live parameters as input fuzzy to increase delivery ratio and decrease the buffer consumption in the all nodes of network.
Keywords: Opportunistic Routing, Fuzzy Routing, Opportunistic Network, Message Routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15372345 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame
Authors: Seyed Saeid Tabaee, Omid Bahar
Abstract:
Nowadays, energy dissipation devices are commonly used in structures. High rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements, specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely make analysis and design process complicated. This effect may be generally represented by Equivalent Viscous Damping (EVD). The equivalent viscous damping might be obtained from the expected hysteretic behavior regarding to the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel Moment Resisting Frame (MRF), which its performance is enhanced by a Buckling Restrained Brace (BRB) system has been evaluated. Having foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural system frequency. Two MRF structures, one equipped with BRB and the other without BRB are simultaneously studied. Extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.Keywords: Buckling restrained brace, Direct displacement based design, Dual systems, Hysteretic damping, Moment resisting frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24752344 Concept Abduction in Description Logics with Cardinality Restrictions
Authors: Viet-Hoang Vu, Nhan Le-Thanh
Abstract:
Recently the usefulness of Concept Abduction, a novel non-monotonic inference service for Description Logics (DLs), has been argued in the context of ontology-based applications such as semantic matchmaking and resource retrieval. Based on tableau calculus, a method has been proposed to realize this reasoning task in ALN, a description logic that supports simple cardinality restrictions as well as other basic constructors. However, in many ontology-based systems, the representation of ontology would require expressive formalisms for capturing domain-specific constraints, this language is not sufficient. In order to increase the applicability of the abductive reasoning method in such contexts, we would like to present in the scope of this paper an extension of the tableaux-based algorithm for dealing with concepts represented inALCQ, the description logic that extends ALN with full concept negation and quantified number restrictions.
Keywords: Abductive reasoning, description logics, semantic matchmaking, non-monotonic inference, tableaux-based method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15572343 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning
Authors: Sepideh Fazeli, Fariba Bahrami
Abstract:
Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15912342 On the Optimality of Blocked Main Effects Plans
Authors: Rita SahaRay, Ganesh Dutta
Abstract:
In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.Keywords: Design matrix, Hadamard matrix, Kronecker product, type 1 criteria, type 2 criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10552341 Numerical and Infrared Mapping of Temperature in Heat Affected Zone during Plasma Arc Cutting of Mild Steel
Authors: Dalvir Singh, Somnath Chattopadhyaya
Abstract:
During welding or flame cutting of metals, the prediction of heat affected zone (HAZ) is critical. There is need to develop a simple mathematical model to calculate the temperature variation in HAZ and derivative analysis can be used for this purpose. This study presents analytical solution for heat transfer through conduction in mild steel plate. The homogeneous and nonhomogeneous boundary conditions are single variables. The full field analytical solutions of temperature measurement, subjected to local heating source, are derived first by method of separation of variables followed with the experimental visualization using infrared imaging. Based on the present work, it is suggested that appropriate heat input characteristics controls the temperature distribution in and around HAZ.Keywords: Conduction Heat Transfer, Heat Affected Zone (HAZ), Infra-Red Imaging, Numerical Method, Orthogonal Function, Plasma Arc Cutting, Separation of Variables, Temperature Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17872340 Dynamic Construction Site Layout Using Ant Colony Optimization
Authors: Y. Abdelrazig
Abstract:
Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.Keywords: Construction site layout, optimization, ant colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31262339 Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array
Authors: Chun-Yuan Huang, Chiao-Yang Cheng, Chun-Yem Huang, Yan-Kuin Su, James Chin-Lung Fang
Abstract:
ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.Keywords: Anti-reflection, Chemical synthesis, Solar cells, ZnO nanostructures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432338 Carbon-Based Composites Enable Monitoring of Internal States in Concrete Structures
Authors: René Čechmánek, Jiří Junek, Bohdan Nešpor, Pavel Šteffan
Abstract:
Regarding previous research studies it was concluded that thin-walled fiber-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibers are less conductive than metal fibers, composites with carbon fibers were evaluated as better current conductors than the composites with metal fibers. The level of electric conductivity is monitored by the means of impedance measurement of designed samples. These composites could be used for a range of applications such as heating of trafficable surfaces or shielding of electro-magnetic fields. The aim of the present research was to design an element with the ability to monitor internal processes in building structures and prevent them from collapsing. As a typical element for laboratory testing there was chosen a concrete column, which was repeatedly subjected to load by simple pressure with continual monitoring of changes in electrical properties.
Keywords: Carbon, conductivity, loading, monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18352337 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping
Authors: Chao Yi, Cunyue Lu, Lingwei Quan
Abstract:
Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.
Keywords: Elliptical trajectory, linear motor, piezoelectric stack, rigid clamping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7202336 Sliding-Mode Control of Synchronous Reluctance Motor
Authors: Mostafa.A. Fellani, Dawo.E. Abaid
Abstract:
This paper presents a controller design technique for Synchronous Reluctance Motor to improve its dynamic performance with fast response and high accuracy. The sliding mode control is the most attractive and suitable method to use for this purpose, since it is simple in design and for its insensitivity to parameter variations or external disturbances. When this method implemented it yields fast dynamic response without overshoot and a zero steady-state error. The current loop control with decentralized sliding mode is presented in this paper. The mathematical model for the synchronous machine, the inverter and the controller is developed. The stability of the sliding mode controller is analyzed. Simulation of synchronous reluctance motor and the controller with PWM-inverter has been curried out, using the SIMULINK software package of MATLAB. Simulation results are presented to show the effectiveness of the approach.Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sliding-mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31072335 A Survey on Lossless Compression of Bayer Color Filter Array Images
Authors: Alina Trifan, António J. R. Neves
Abstract:
Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.Keywords: Bayer images, CFA, losseless compression, image coding standards.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545