
 

 

 

Abstract—This paper aims to propose a novel, robust, and simple 

method for obtaining a human 3D face model and camera pose 

(position and orientation) from a video sequence. Given a video 

sequence of a face recorded from an off-the-shelf digital camera, 

feature points used to define facial parts are tracked using the Active-

Appearance Model (AAM). Then, the face’s 3D structure and camera 

pose of each video frame can be simultaneously calculated from the 

obtained point correspondences. This proposed method is primarily 

based on the combined approaches of Gradient Descent and Powell’s 

Multidimensional Minimization. Using this proposed method, 

temporarily occluded point including the case of self-occlusion does 

not pose a problem. As long as the point correspondences displayed 

in the video sequence have enough parallax, these missing points can 

still be reconstructed. 

 

Keywords—Camera Pose, Face Reconstruction, Gradient 

Descent, Powell’s Multidimensional Minimization.  

I. INTRODUCTION 

STIMATION of point reconstruction and camera pose 

from multiple video frames can be done by many 

techniques. Some techniques for estimating camera pose 

require the placement of specific markers with known 3D 

world positions [3-7]. For certain environments, it may not be 

suitable or even possible to add markers to the scene. Even in 

cases where markers can be added to the scene, measuring 

their precise positions may still pose a problem. So, instead of 

using artificial markers in a scene, this paper uses natural 

feature-points that can be tracked by using the Active 

Appearance Model (AAM) [19], [20]. 

In order not to use any special markers of known world 

coordinates, auto- or self- calibration is proposed [8]. Auto-

calibration methods estimates structure from motion based on 

a given number of images. Examples of methodologies 

include fundamental matrix for two views [8], trifocal tensor 

for three [9], quadrifocal tensor for four [10], and factorization 

for multiple views [11]. In the auto-calibration, there are three 

levels of reconstruction including projective, affine, and 

metric reconstruction. Considering the many steps involved 
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and the details needed for reconstruction, noisy results from a 

lower level of reconstruction can propagate the error to a 

higher level. Thus, an optimization process is needed after 

each level of reconstruction. Furthermore, if points are 

missing because of temporary occlusions, special strategies 

must be applied to find correspondences prior to the 3D 

reconstruction process. In the case of self-occlusion, searching 

for correspondences is even harder. This proposed method is a 

simpler and more practical method where self-occlusions can 

be ignored while the robustness is still retained. 

Gradient descent is a robust minimization method which 

has been used for various tasks such as training radial basis 

function (RBF) neural networks [12], predicting or searching 

motion of point in images [13], [15], and estimating 3D 

camera motion [14], [16]. Unfortunately, one main 

disadvantage of the original gradient descent is that the 

derivative of system of equations or the conjugate direction 

[13] must be calculated. This derivative can then be used to 

define the step size for parameter updating. An incorrect 

derivative-formula may cause the system to be prone to errors. 

With the method presented here, the derivative need not be 

calculated. 

Another approach for finding the minimization and 

maximization of the system functions is Powell’s line-

minimization method [1]. Powell’s minimization for multi-

dimensional system can be seen in [1], [17], [18]. Line 

minimization used in Powell’s multi-dimensional search can 

be illustratively explained as climbing down the valley shaped 

like a 3D-parabola graph. Although many variables make the 

multi-dimensional direction, only one variable or one line 

needs to be considered at a time. While considering a 

variable/line, the deepest point along that line may not be the 

correct result to obtain a global solution. Thus, the method 

proposed in this paper chooses not to climb down until the line 

minimization but, instead, climb with only one small step at a 

time in the currently correct direction. 

For face reconstruction, Y. Zheng, J. Chang, Z. Zheng and 

Z. Wang [22] proposed 3D face reconstruction in 2007 using 

stereo images together with a reference 3D face model. Since 

they found that the traditional stereo methods based on 

intensity failed to provide good results in 3D face 

reconstruction, a reference 3D model of the human face is 

used to help in correspondence calculation. Although a 

reference 3D model is used, non-linear deformations and 

camera registration have to be solved in order to find 

correspondences in the stereo images. In 2008, S. W. Park, J. 
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Heo, and M. Savvides [21] used a single image of a human 

face for 3D reconstruction. An average 3D face model is 

created from 3D training images. If the given image is not a 

frontal image of the face, pose correction of feature points 

must be done to re-create points for the frontal view before 

mapping the re-created points to the 3D average model via 

Delaunay triangulation. Reconstructing 3D structure from one 

single image may appear to provide a big advantage, but a 3D 

model of the underlying object needs to be prepared prior to 

using the algorithm. In other words, one must know what kind 

of object is being reconstructed. Also, the optimal solution of 

3D structure for the unseen feature points may not be obtained 

because an assumption that the reconstructed object is 

symmetric is needed.  

Y. Zheng and Z. Wang [23] reconstructed a 3D face model 

from a single frontal face image. They used a learning based 

approach for the reconstruction. That is, a database indicating 

the relationship between feature point and point depth must be 

prepared in advance. Since only one image is needed, point-

depth estimation must be solved accurately. To estimate the 

point depth from just one image, a learning step of mapping 

between texture on a face and depth determination cannot be 

avoided. In other words, a database with depth of facial 

features must be available. Furthermore, the learning process 

to convert from the pattern map to the depth map from the 

prepared database is a high dimensional, nonlinear problem. 

Combination concepts of the line minimization used in 

Powell’s multi-dimensional search and the simple gradient 

descent optimization are adapted in the work proposed in this 

paper. The main concept of this proposed method is based on 

the fact that a feature point’s 2D image points seen in several 

images will be back-projected to the same point in three 

dimensions [10]. Given 2D correspondences of 𝑁 3D-points 

seen in 𝑀 frames provides more equations than unknowns. 

This constraint is sufficient to solve for all unknowns of the 

system of equations. Using the assumption that each 

contiguous frame from a video sequence has a small 

difference in image motion, camera motion can be easily 

achieved. The case missing feature points due to temporary 

occlusion or self-occlusion does not pose a problem in our 

proposed method as long as the points are seen in a sufficient 

number of frames to provide the above mentioned constraint. 

If there is sufficient parallax among the points, each point’s 

3D structure can be obtained by this proposed method. 

After obtaining the face’s 3D structure and camera motion, 

one may use them directly for applications such as Augmented 

Reality (AR), security, person identification, etc., or even use 

its re-projection to improve on searching correspondences of 

the missing points in AAM or other tracking systems.   

II. METHODOLOGY 

To reconstruct a human’s face, 68 feature points are defined 

for the important parts of the face such as eyebrows, eyes, 

nose, mouth, and chin. The feature points defining facial parts 

on a human face are determined as shown in Fig. 1: 

 
Fig. 1 Feature points used to define facial parts 

Some video frames may have some invisible points due to 

self-occlusion of the face as shown in Fig. 2: 

 
Fig. 2 An example of point missing due to self-occlusion 

Let a transformation matrix composed of rotation and 

translation parameters be 

𝑀4×4 =  
𝑅3×3 𝑻3×1
01×3 1

   (1) 

The 3D world coordinates of the feature points in the real-

world can be defined as 𝑾 =  𝑋𝑤 𝑌𝑤 𝑍𝑤 1 𝑇. The 3D 

transformation between the world coordinate and the camera 

coordinates, 𝑪 =  𝑋𝑐 𝑌𝑐 𝑍𝑐 1 𝑇 , can be obtained by 

𝑪  = 𝑀𝑤→𝑐𝑾   (2) 

From (1) and (2), the transformation matrix can be re-

written as:  

𝑪  =  𝑅𝑥
−1𝑅𝑦

−1𝑅𝑧
−1𝑇−1 𝑾   (3) 

where the rotation and translation matrices in (3) are 

defined as: 

𝑅𝑥
−1 =  

1 0 0 0
0 cos𝜃𝑥 sin𝜃𝑥 0
0 − sin 𝜃𝑥 cos 𝜃𝑥 0
0 0 0 1

  

(4) 

𝑅𝑦
−1 =  

cos 𝜃𝑦 0 − sin𝜃𝑦 0

0 1 0 0
sin𝜃𝑦 0 cos 𝜃𝑦 0

0 0 0 1

  

𝑅𝑧
−1 =  

cos 𝜃𝑧 sin𝜃𝑧 0 0
− sin𝜃𝑧 cos 𝜃𝑧 0 0

0 0 1 0
0 0 0 1

  

𝑇−1 =  

1 0 0 −𝑡𝑥
0 1 0 −𝑡𝑦
0 0 1 −𝑡𝑧
0 0 0 1

  

After transforming a 3D-point from its world coordinate to 

a camera one, the camera coordinate can then be projected into 
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the image captured from this camera by using equation (5). 

The obtained 2D image coordinate point, 𝑺 =  𝑢 𝑣 1 𝑇 , is 

the feature-point that serves as the input. 

𝑺  =  
𝑓 0 0
0 𝑓 0
0 0 1

  
𝑋𝑐 𝑍𝑐 

𝑌𝑐 𝑍𝑐 
1

   (5) 

Considering the system equations, the unknown variables 

include camera’s position (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧) and orientation (𝜃𝑥 , 𝜃𝑦 , 

𝜃𝑧) for each video frame, a single focal length (𝑓), and 3D 

reconstructed points (𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤 ) for each feature point 

representing facial parts. So with 𝑀 frames and 𝑁 feature 

points, there will be 6𝑀 + 3𝑁 + 1 variables to be estimated. 

As input of the system, each 2D feature-point has two 

components (𝑢, 𝑣) so 𝑁 feature-points seen in 𝑀 frames will 

provide 2𝑀𝑁 system-equations in total. The number of 

equations must be more than the number of unknown 

variables. 

The steps in the proposed method are briefly explained as 

follows: 

1. Feature points are tracked with the precision of sub-

pixels by the AAM method. Note that, in the method 

proposed here, feature points need not be visible in all 

the frames. 

2. Initialize all variables and step sizes (each variable has 

its own step size) used for updating variables; 𝑍𝑤  to a 

negative value such as -1, 𝑓 to a sensibly positive (one 

may choose the range of 300-1,000), step-size to a 

positive small value such as 1, and the other variables 

can be initialized as 0’s. 

3. Repeat steps 4 and 5 for all variables until the 

convergence to a global energy solution calculated by 

average distance of point re-projection or until a 

maximum number of iterations. 

4. Add the current variable with its step size. Note that 

both positive and negative value of the step size must 

be tried. 

5. Decrease step-size of the current variable by half or by 

a ratio smaller than one until local energy of the 

variable is reduced or until the step size is too small, 

e.g., 1×10
-8

. 

Since for video recordings consecutive frames generally 

have a small difference in camera motion, the updated camera-

pose of the current frame should not be too different from the 

previous frame. If a big difference is observed, the current 

camera’s pose is reset to the previous one. Also, since all 3D-

points should be in front of the camera only (i.e. all 𝑍𝑤 ’s 

should be negative), a swap in signs of 𝑍𝑤  must be done 

whenever 𝑍𝑤  becomes a positive number. Furthermore, the 

focal length must be positive and non-zero, so an absolute 

value is needed, to avoid negative focal length values. Also, if 

the focal length becomes zero, it is re-initialized to a positive 

value such as 1 instead. 

III. EXPERIMENTAL RESULTS 

A. Synthetic Environment 

Experimentation on synthetic data can be used to test the 

accuracy both in two and three dimensions because the exact 

3D information is known. For two dimensions, pixel-errors 

can be calculated from the displacement of point’s re-

projection. The accuracy in three dimensions can be 

demonstrated from both the reconstructed 3D-structure of a 

synthetic face and the camera pose of all video frames.  

A video sequence is generated from 3DS Max with 225 

frames in length, frame rate is 15 frames per second, and 

image frame size is 640×480 pixels. Some of the video frames 

and pixel-errors calculated from point re-projection are shown 

in Fig. 3. 

   
(a) Frame 1, 122, and 225 respectively of the video sequence 

   
(b) Corresponding displacement from point re-projection 

Fig. 3 Input video frames and their corresponding pixel-errors calculated from re-projection 

From Fig. 3(b), the pixel-errors are very low so that the 

observed (input) points and the re-projected ones are seen as 

overlaid in the same positions. The average pixel-error of this 

experiment is calculated from the Root Mean Square (RMS) 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2917International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
76

.p
df



 

 

error as shown in Table I. 
TABLE I 

AVERAGE PIXEL-ERRORS FOR SYNTHETIC FACE 

#Equations #Variables Iterations Time(sec.) Error(pixels) 

30,600 1,549 3,500 407 2.54e-4 

Examples of 3D graphic-results showing the obtained 3D-

face and camera motion are displayed in the OpenGL 

environment as shown in Fig. 4. Since, in this experiment, a 

camera pans around a synthetic face from one side to the 

other, the camera motion of all video frames represented by 

several colored cones looks like a long ribbon in Fig. 4. 

 
 

(a) Front view (b) Perspective view 

Fig. 4 Example graphic-results showing the face model and camera motion in OpenGL’s 3D environment 

Numerical errors in three dimensions are shown in Table II. 

Note that, for calculating the 3D numerical-errors, the position 

and orientation of the first calculated camera must be 

transformed to be the same as that of the first input camera. 

The real size of the face model can be recovered by re-scaling 

it with a ratio between sizes of the input face and the 

calculated face. 

TABLE II 

AVERAGE 3D-ERRORS FOR SYNTHETIC FACE 

Orientation (degrees) Position (specified unit) Face Model (specified unit) 

𝑟𝑥  𝑟𝑦  𝑟𝑧  𝑡𝑥  𝑡𝑦  𝑡𝑧  𝑋𝑤  𝑌𝑤  𝑍𝑤  

0.015105 0.039641 0.031228 0.030606 0.003449 0.010833 0.002064 0.002856 0.003208 

B. Real-World Environment 

Since the precise distance between any two contiguous 

feature-points on a real person’s face cannot be measured, 

only 2D errors calculated from displacement of point’s re-

projection are shown. In this experiment, the camera motion 

can be explained as that the camera pans around a human face; 

starts from the front of the person, then moves to the right of 

the face, and finally moves back until to the left of the face. 

The video sequence used for this experiment is recorded by a 

hand-held digital-camera with 128 frames in length, a frame 

rate of 15 frames per second, and a frame size of 320×240 

pixels. Some examples of video frames and pixel-errors 

calculated from the intermediate and the final results are 

shown in Fig. 5. From Fig. 5, the two sets of colored points 

representing the observed and the re-projected points become 

closer after a greater numbers of iterations. 

  

   
(a) Frame 1, 64, and 128 respectively of the video sequence 

   
(b) Displacement from point re-projection after 500 iterations 
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(c) Displacement from point re-projection after 5,000 iterations 

Fig. 5 Input video frames and their corresponding pixel-errors calculated from re-projection 

The average pixel-errors of this experiment are calculated 

after various numbers of iterations and shown in Table  III. 

After the feature points of the facial parts are reconstructed, 

the Delaunay triangulation method introduced in [1], [2] is 

used to create a 3D mesh followed by texture-mapping and 

3D-lighting using OpenGL libraries. The final 3D graphics-

result showing the reconstructed 3D-face and the camera 

motion is displayed for different viewpoints in Fig. 6. 

TABLE III 

AVERAGE PIXEL-ERRORS FOR REAL HUMAN’S FACE 

#Equations #Variables Iterations Time(sec.) Error(pixels) 

14,836 967 500 32 3.59e-2 

14,836 967 1,000 64 3.48e-2 

14,836 967 3,500 221 2.60e-2 

14,836 967 4,500 284 2.43e-2 

14,836 967 5,000 315 2.41e-2 

 

 
(a) Front view 

 
(b) Perspective view 1 

 
(c) Perspective view 2 

Fig. 4 Example graphic-results showing the face model and camera motion in OpenGL’s 3D environment 

IV. CONCLUSION 

From the experiments on the synthetic face and real human 

face, one may see that the missing image-points do not pose a 

problem in our proposed method for estimating 3D-face 

reconstruction and camera pose computation. The proposed 

approach is simple, practical, but yet robust. 
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