Search results for: Q algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3422

Search results for: Q algorithm

1442 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
1441 Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method

Authors: H. Ghanbari, H. Nikbakht, A. Zahedi, M. Ghanbari

Abstract:

This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.

Keywords: Wind Turbine, Simulink, Reference Tracking Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
1440 Hierarchical Clustering Analysis with SOM Networks

Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy

Abstract:

This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.

Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
1439 Analysis of Public-Key Cryptography for Wireless Sensor Networks Security

Authors: F. Amin, A. H. Jahangir, H. Rasifard

Abstract:

With the widespread growth of applications of Wireless Sensor Networks (WSNs), the need for reliable security mechanisms these networks has increased manifold. Many security solutions have been proposed in the domain of WSN so far. These solutions are usually based on well-known cryptographic algorithms. In this paper, we have made an effort to survey well known security issues in WSNs and study the behavior of WSN nodes that perform public key cryptographic operations. We evaluate time and power consumption of public key cryptography algorithm for signature and key management by simulation.

Keywords: Wireless Sensor Networks, Security, Public Key Cryptography, Key Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
1438 Considering Assembly Operations and Product Structure for Manufacturing Cell Formation

Authors: M.B. Aryanezhad, J. Aliabadi

Abstract:

This paper considers the integration of assembly operations and product structure to Cellular Manufacturing System (CMS) design so that to correct the drawbacks of previous researches in the literature. For this purpose, a new mathematical model is developed which dedicates machining and assembly operations to manufacturing cells while the objective function is to minimize the intercellular movements resulting due to both of them. A linearization method is applied to achieve optimum solution through solving aforementioned nonlinear model by common programming language such as Lingo. Then, using different examples and comparing the results, the importance of integrating assembly considerations is demonstrated.

Keywords: Assembly operations and Product structure, CellFormation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1437 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny

Abstract:

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.

Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1436 A Trends Analysis of Image Processing in Unmanned Aerial Vehicle

Authors: Jae-Neung Lee, Keun-Chang Kwak

Abstract:

This paper describes an analysis of domestic and international trends of image processing for data in UAV (unmanned aerial vehicle) and also explains about UAV and Quadcopter. Overseas examples of image processing using UAV include image processing for totaling the total numberof vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT(scale invariant features transform) matching, and application of median filter and thresholding. In Korea, many studies are underway including visualization of new urban buildings.

Keywords: Image Processing, UAV, Quadcopter, Target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7672
1435 OFDM and Fingerprint Authentication for Efficient Airport Security

Authors: K.Amrithavarshini, S.Chandrachudeswaran

Abstract:

This paper presents an idea to improve the efficiency of security checks in airports through the active tracking and monitoring of passengers and staff using OFDM modulation technique and Finger print authentication. The details of the passenger are multiplexed using OFDM .To authenticate the passenger, the fingerprint along with important identification information is collected. The details of the passenger can be transmitted after necessary modulation, and received using various transceivers placed within the premises of the airport, and checked at the appropriate check points, thereby increasing the efficiency of checking. OFDM has been employed for spectral efficiency.

Keywords: Orthogonal Frequency Division Multiplexing, FFT Algorithm, Fingerprint Authentication, Airport Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1434 A Learning Agent for Knowledge Extraction from an Active Semantic Network

Authors: Simon Thiel, Stavros Dalakakis, Dieter Roller

Abstract:

This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.

Keywords: Reinforcement learning, learning retrieval agent, search in semantic networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1433 Face Recognition Using Eigen face Coefficients and Principal Component Analysis

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari

Abstract:

Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the work lies in optimizing Euclidean distance and paving the way to test the same algorithm using Matlab which is an efficient tool having powerful user interface along with simplicity in representing complex images.

Keywords: Eigen Face, Multidimensional, Matching, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868
1432 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile

Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi

Abstract:

In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.

Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1431 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
1430 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
1429 Relevant LMA Features for Human Motion Recognition

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.

Keywords: Human motion recognition, Discriminative LMA features, random forest, features reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
1428 Fast Extraction of Edge Histogram in DCT Domain based on MPEG7

Authors: Minyoung Eom, Yoonsik Choe

Abstract:

In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.

Keywords: DCT, Descriptor, EHD, MPEG7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
1427 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
1426 A New Decision Making Approach based on Possibilistic Influence Diagrams

Authors: Wided Guezguez, Nahla Ben Amor

Abstract:

This paper proposes a new decision making approch based on quantitative possibilistic influence diagrams which are extension of standard influence diagrams in the possibilistic framework. We will in particular treat the case where several expert opinions relative to value nodes are available. An initial expert assigns confidence degrees to other experts and fixes a similarity threshold that provided possibility distributions should respect. To illustrate our approach an evaluation algorithm for these multi-source possibilistic influence diagrams will also be proposed.

Keywords: influnece diagram, decision making, graphical decision models, influence diagrams, possibility theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1425 VoIP Networks Performance Analysis with Encryption Systems

Authors: Edward Paul Guillen, Diego Alejandro Chacon

Abstract:

The VoIP networks as alternative method to traditional PSTN system has been implemented in a wide variety of structures with multiple protocols, codecs, software and hardware–based distributions. The use of cryptographic techniques let the users to have a secure communication, but the calculate throughput as well as the QoS parameters are affected according to the used algorithm. This paper analyzes the VoIP throughput and the QoS parameters with different commercial encryption methods. The measurement–based approach uses lab scenarios to simulate LAN and WAN environments. Security mechanisms such as TLS, SIAX2, SRTP, IPSEC and ZRTP are analyzed with μ-LAW and GSM codecs.

Keywords: VoIP, Secure VoIP, Throughput Analysis, VoIP QoS evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893
1424 Analysis of Combined Use of NN and MFCC for Speech Recognition

Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam

Abstract:

The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.

Keywords: Speech Recognition, MFCC, Neural Network, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3266
1423 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
1422 A Blind Digital Watermark in Hadamard Domain

Authors: Saeid Saryazdi, Hossein Nezamabadi-pour

Abstract:

A new blind gray-level watermarking scheme is described. In the proposed method, the host image is first divided into 4*4 non-overlapping blocks. For each block, two first AC coefficients of its Hadamard transform are then estimated using DC coefficients of its neighbor blocks. A gray-level watermark is then added into estimated values. Since embedding watermark does not change the DC coefficients, watermark extracting could be done by estimating AC coefficients and comparing them with their actual values. Several experiments are made and results suggest the robustness of the proposed algorithm.

Keywords: Digital Watermarking, Image watermarking, Information Hiden, Steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
1421 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djameleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
1420 Culturally Enhanced Collaborative Filtering

Authors: Mahboobe Zardosht, Nasser Ghasem-Aghaee

Abstract:

We propose an enhanced collaborative filtering method using Hofstede-s cultural dimensions, calculated for 111 countries. We employ 4 of these dimensions, which are correlated to the costumers- buying behavior, in order to detect users- preferences for items. In addition, several advantages of this method demonstrated for data sparseness and cold-start users, which are important challenges in collaborative filtering. We present experiments using a real dataset, Book Crossing Dataset. Experimental results shows that the proposed algorithm provide significant advantages in terms of improving recommendation quality.

Keywords: Collaborative filtering, Cross-cultural, E-commerce, Recommender systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1419 Routing Algorithm for a Clustered Network

Authors: Hemanth KumarA.R, Sudhakara G., Satyanarayana B.S.

Abstract:

The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc

Keywords: Metric dimension, Cluster dimension, Cluster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
1418 A Network Traffic Prediction Algorithm Based On Data Mining Technique

Authors: D. Prangchumpol

Abstract:

This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.

Keywords: Traffic prediction, association rule, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3668
1417 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
1416 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: R. B. Ogunrinde

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: Differential equations, Numerical, Initial value problem, Polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
1415 Grid Artifacts Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when digital image is resized on a diagnostic monitor. In this paper we propose an automated grid artifactsdetection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: Computed radiography, grid artifacts, image filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4291
1414 Evolved Strokes in Non Photo–Realistic Rendering

Authors: Ashkan Izadi, Vic Ciesielski

Abstract:

We describe a work with an evolutionary computing algorithm for non photo–realistic rendering of a target image. The renderings are produced by genetic programming. We have used two different types of strokes: “empty triangle" and “filled triangle" in color level. We compare both empty and filled triangular strokes to find which one generates more aesthetic pleasing images. We found the filled triangular strokes have better fitness and generate more aesthetic images than empty triangular strokes.

Keywords: Artificial intelligence, Evolutionary programming, Geneticprogramming, Non photo–realistic rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1413 Swarm Navigation in a Complex Environment

Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh

Abstract:

This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.

Keywords: Swarm, practical stability, motion planning, emergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395