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Abstract—This paper presents the development, analysis and 

implementation of an inverse polynomial numerical method which is 
well suitable for solving initial value problems in first order ordinary 
differential equations with applications to sample problems. We also 
present some basic concepts and fundamental theories which are vital 
to the analysis of the scheme. We analyzed the consistency, 
convergence, and stability properties of the scheme. Numerical 
experiments were carried out and the results compared with the 
theoretical or exact solution and the algorithm was later coded using 
MATLAB programming language.   

 
Keywords—Differential equations, Numerical, Initial value 

problem, Polynomials. 

I. INTRODUCTION 

N the years past, a large number of methods suitable for 
solving ordinary differential equations have been proposed, 

A major impetus to developing numerical procedures was the 
invention of the calculus by Newton and Leibnitz as this led to 
accurate mathematical models for physical reality such as 
Sciences, Engineering, Medicine and Business. These 
mathematical models cannot be usually solved explicitly and 
numerical method to obtain approximate solutions is needed. 
Up to the late 1800’s it appears that most mathematicians were 
quite broad in their interest. Many researchers have developed 
numerical methods while some try to improve the accuracy of 
some methods. Generally, the efficiency of any of these 
methods depends on the stability and accuracy properties. 
Accuracy properties of different methods are usually 
compared by considering the order of convergence as well as 
the truncation error coefficient of the various methods. The 
major sources of motivation for this work are those of [1]-[4], 
[11], [13]. In this paper we shall consider the initial value 
problem of the form; 
 

),(1 yxfy  ; )(ay                             (1) 
 
We developed an algorithm which can effectively solve 

initial value problems in ordinary differential equation. 
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II. SOME BASIC CONCEPTS 

We shall consider the following basic concepts which are 
very vital to the development of the new scheme based on [5]-
[7], [10] 

A. Stability 

A numerical method is said to be stable if the difference 
between the numerical solution and the exact solution can be 
made as small as possible, that is if there is exists two positive 

0e and K such that the following holds. [8], [9], [14] 

 
  0eKxyy nn                   (2)

 

B. Consistency 

A numerical scheme with an increment function   yhxn ,,,  

is said to be consistent with the initial problem consideration if  
 

 yhxn ,,, =  yxf ,              (3) 

C. Convergence 

A numerical method is said to be convergent if for all initial 
value problem satisfying the hypothesis of Lipschitz condition 
given by 

 

      yyLyxfyxf ,,         (4) 

 
where the Lipschitz condition is denoted by L. The necessary 
and sufficient conditions for convergence are the stability and 
consistency. 

D. Round off Error 

This can be defined as the error due to computing device. 
They arise because it is possible to represent all real numbers 
exactly on a finite-state machine. It can be represented 
mathematically as 

 
ܴ௡ାଵ ൌ ௡ାଵݕ െ  ௡ାଵ                      (5)ݍ

 
where ݕ௡ାଵ is the approximate solution and ݍ௡ାଵ is the 
computer/machine output. 
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III. DEVELOPMENT OF THE NEW SCHEME 

Let the numerical approximation hyn   be evaluated at 

kxx n   to the exact solution )( hxy n   to the first order 

ordinary differential equation be represented as  
 

 )( 1nxy = 1

1

][ 




k

j

j
nj

p
n xbey           (6)              

 
where  ݁௣ is the exponential of p and the parameters  ௝ܾݏ′  are 
to be determined.  
 

 1ny = 1

1

][ 




k

j

j
nj

p
n xbey                    (7) 

1ny =





k

j

j
nj

p

n

xbe

y

1

)(

 

 
Setting k=3 (order three) 
 

 1nn yhy




3

1

)(
j

j
nj

p

n

xbe

y

                         (8)   

 

3
3

2
21

1

nnn
p

n
n

xbxbxbe

y
y




                         (9) 

 
Applying the Taylor’s series expansion on the L.H.S. of (9)  
 

...
!3

'''

!2

32

1 



nn

nnnn

yhyh
hyyhyy   (10) 

 
13

321 ][  nnn
p

n xbxbxbey  

 
where  

 ...
!3!2

1
32


pp

pe p                     (11)  

 
But at p=0 (a constant), we have that 
 

1...0001 pe  
 

Hence        
݁଴ ൌ 1                                         (12) 

 
So that,  

3
3

2
21

1
1 nnn

n
nn

xbxbxb

y
hyy




          (13) 




 ...
!3

'''

!2

32
nn

nn

yhyh
hyy  

3
3

2
211 nnn

n

xbxbxb

y


              (14) 

 

which can also be written as 
 




 ...
!3

'''

!2

32
nn

nn

yhyh
hyy  

13
321 ]1[  nnnn xbxbxby              (15)

 

 
Using Binomial series expansion on the R.H.S. of (15) 
 

13
3

2
21 )](1[  nnnn xbxbxby  

 

2 3 2 3 2
1 2 3 1 2 3

2 3 3
1 2 3

( 1)( 2)
[1 ( 1)( ) ( )

2!
( 1)( 2)( 3)

( ) ...]
3!

n n n n n n n

n n n

y b x b x b x b x b x b x

b x b x b x

          
      


  
(16) 

 
2 3

1 2 3

2 3 2
1 2 3

2 3 3
1 2 3

[1 ( 1)( )

( )

( ) ...]

n n n n

n n n

n n n

y b x b x b x

b x b x b x

b x b x b x

     


   
   

                  (17) 

 
2 3 2 2 3 3

1 2 3 1 1 2 1 2

2 3 3
1 2 3

[1 ( ) ( 2 2 )

( ) ...]

n n n n n n n

n n n

y b x b x b x b x b b x b b x

b x b x b x

       


    
 

2 3 2 2 3
1 2 3 1 1 2

4 2 4 5 2 6
1 3 2 2 3 3

3 3 2 4 2 5 2 4
1 1 2 1 3 1 2

2 5 2 5 2 5
1 2 1 3 1 2

[1 ( ) 2

2 2 ...

( 2 )

(2 2 ) ...

n n n n n n

n b n n

n n n n

n n n

y b x b x b x b x b b x

b b x b x b b x b x

b x b b x b b x b b x

b b x b b x b b x

     


    


     
   

 

 
Firstly, we expand 
 

23
3

2
21 )( nnn xbxbxb   

)( 3
3

2
21 nnn xbxbxb  )( 3

3
2

21 nnn xbxbxb   
2 2 3 4 3 2 4

1 1 2 1 3 2 1 2

5 4 5 2 6
2 3 3 1 2 3 3 ...

n n n n n

n n n n

b x b b x b b x b b x b x

b b x b b x b b x b x

   

      

23
3

2
21 )( nnn xbxbxb   

...)2(2 42
231

3
21

22

1
 nnn xbbbxbbxb                 

(18) 

 
Now, expanding 
 

33
3

2
21 )( nnn xbxbxb  =

)...)()2(2( 3
3

2
21

42
231

3
21

22

1 nnnnnn xbxbxbxbbbxbbxb   
3 3 2 5 2 4 2 5 2 5 6

1 1 3 1 2 1 3 1 2 1 2 3

2 5 2 6
1 3 2 1 1 3 2 2

2 2 2

(2 ) (2 ) ...)]

n n n n n n

n n

b x b b x b b x b b x b b x b b b x

b b b b x b b b b x

    

    
 

33
3

2
21 )( nnn xbxbxb  = 

3 3 2 5 2 4 2 5 2 5 6
1 3 1 2 1 3 1 2 1 2 31

2 5 2 6
1 3 2 1 1 3 2 2

2 2 2

(2 ) (2 ) ...)]

n n n n n n

n n

b x b b x b b x b b x b b x b b b x

b b b b x b b b b x

    

    
(19) 

 
Substituting (18) & (19) into (17) 
 

...)2()2(222

)2(21[

6
2

2
231

5
1

2
231

6
321

52
21

4
2

2
1

5
3

2
1

4
2

2
1

33
1

42
231

3
21

22
1

3
3

2
21





nnnnn

nnnnnnnnnn

xbbbbxbbbbxbbbxbbxbb

xbbxbbxbxbbbxbbxbxbxbxby  
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Hence, 

௡ሾ1ݕ െ ܾଵݔ௡ ൅	ሺܾଵ
ଶ െ ܾଶሻݔ௡ଶ ൅	ሺ2ܾଵܾଶ െ ܾଷ െ ܾଵ

ଷ ሻݔ௡ଷ

൅	ሺ2ܾଵܾଷെ	3ܾଵ
ଶܾଶ ൅ ܾଶ

ଶሻݔ௡ସ 
ൌ ௡ݕ െ ܾଵݔ௡ݕ௡ ൅ ሺܾଵ

ଶ െ ܾଶሻݔ௡ଶݕ௡ ൅ ሺ2ܾଵܾଶ െ ܾଷ െ ܾଵ
ଷሻݔ௡ଷݕ௡ ൅⋯ 




 ...
!3

'''

!2

32
nn

nn

yhyh
hyy

                 (20)
 

 
We must ensure that the expansion on the L.H.S. of (20)   
agrees term by term with that on the R.H.S. 
 

nhy nn yxb1
 

nn

n

yx

yh
b


1

                         (21) 

 

nn
n yxbb

yh 2
2

2
1

2

)(
!2


  

nn

n

yx

yh
bb 2

2

2
2

1
2

)(


                        (22) 

 
 
 
 
 

Substituting (21) into (22), we have 
 

nn

n

nn

n

yx

yh

yx

yh
b 2

''2

22

22

2
2

)(



  

22

222

2
2

)(2

nn

nnn

yx

yyhyh
b


                              (23) 


!3

'''3
nyh

nn yxbbbb 33
1321 )2( 

 

3b
nn

n

yx

yh
bbb 3

'"3
3

121
6

2 
                   (24) 

 
Substitute (21) and (23) into (24) 
 

]
6

[]
)(

[]
2

)(2
][[2

3

"'3

33

33

22

"222

3

nn

n

nn

n

nn

nnn

nn

n

yx

yh

yx

yh

yx

yyhyh

yx

hy
b 





  

ൌ െ
݄ଷݕ௡ᇱ ሾ2ሺݕ௡ᇱ ሻଶ െ ௡ᇱᇱሿݕ௡ݕ

௡ݔ
ଷݕ௡

ଷ ൅
݄ଷሺݕ௡ᇱ ሻଷ

௡ݔ
ଷݕ௡

ଷ െ
݄ଷݕ௡ᇱᇱᇱ

௡ݔ6
ଷݕ௡

 

ൌ
ሾെ12݄ଷሺݕ௡ᇱ ሻଷ ൅ 6݄ଷݕ௡ݕ௡ᇱݕ௡ᇱᇱ ൅ 6݄ଷሺݕ௡ᇱ ሻଷ െ ݄ଷݕ௡ଶݕ௡ᇱᇱᇱሿ

௡ݔ6
ଷݕ௡

ଷ  

ܾଷ ൌ
ሾ଺௛య௬೙௬೙ᇲ ௬೙ᇲᇲି଺௛యሺ௬೙ᇲ ሻయି௛య௬೙మ௬೙ᇲᇲᇲሿ

଺௫೙
య௬೙

య                (25) 

Substituting (21), (23) and (25) in to (13) 
 

௡ାଵݕ 	ൌ
௡ݕ

1 െ ൤
௡ᇱݕ݄
௡ݕ௡ݔ

൨ ௡ݔ ൅	൤
2݄ଶሺݕᇱ݊ሻଶ െ ݄ଶݕ௡ݕ௡ᇱᇱ

௡ଶݕ௡ଶݔ2
൨ ௡ଶݔ ൅ ൤

ሾሺ6݄ଷݕ௡ݕ௡ᇱݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻଷ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶሻ
௡ݔ6		

ଷݕ௡
ଷ ൨ ௡ݔ

ଷ

௡ାଵݕ 	ൌ 	
௬೙

ଵି൤
೓೤೙

ᇲ

೤೙
൨ା	ቈ

మ೓మ൫೤ᇲ೙൯
మ
ష೓మ೤೙೤೙

ᇲᇲ

మ೤೙
మ ቉ା൥

൤൫ల೓య೤೙೤೙
ᇲ ೤೙

ᇲᇲషల೓యሺ೤೙
ᇲ ൯
య
ష೓య೤೙

ᇲᇲᇲ೤೙
మ൰

ల೤೙
య ൩	

 (26) 

 

௡ାଵݕ 			ൌ
଺௬೙

ర

଺௬೙
యି଺௛௬೙

మ௬೙
ᇲ ା଺௛మ௬೙൫௬೙

ᇲ ൯
మ
ିଷ௛మ௬೙

మ௬೙
ᇲᇲା଺௛య௬೙௬೙

ᇲ ௬೙
ᇲᇲି଺௛యሺ௬ᇲ௡ሻయି௛య௬೙

ᇲᇲᇲ௬೙
మ
 

(27) 
 
Hence, the scheme is 
 

௡ାଵݕ 			ൌ
଺௬೙ర

଺௬೙
యି଺௛௬೙

మ௬೙
ᇲ ାଷ௛మ௬೙ሾଶሺ௬೙

ᇲ ሻమି௬೙௬೙
ᇲᇲሿା௛యሾ଺௬೙௬೙

ᇲ ௬೙
ᇲᇲି଺ሺ௬ᇲ௡ሻయି௬೙

ᇲᇲᇲ௬೙
మሿ

 

(28) 
IV. ALGORITHM 

An approximate solution to the IVP  
ᇱݕ ൌ ݂ሺݔ, ;	ሻݕ ଴ሻݔሺݕ ൌ ,଴ݔ ଴ at the pointsݕ …,ଵݔ ,  ௡ is given byݔ

௡ାଵݕ ൌ ௡ሾ݁௣ݕ	 ൅ ∑ ௝ܾݔ௡
௝ሿ	ଷ

௝ୀଵ
ିଵ

 where p=0 (a constant)   with 
parameters 
 

ܾଵ ൌ 	െ
ᇱ	௡ݕ݄

௡ݕ௡ݔ
 

	ܾଶ ൌ
ଶ௛మሺ௬೙ᇲ ሻమି௛మ௬೙ᇲᇲ௬೙

ଶ௫೙
మ௬೙

మ    

ܾଷ ൌ
ሾ6݄ଷݕ௡ݕ௡ᇱݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻଷ െ ݄ଷݕ௡ଶݕ௡ᇱᇱᇱሿ

௡ݔ6
ଷݕ௡

ଷ  

௡ାଵݔ ൌ ଴ݔ ൅	ሺ݊ ൅ 1ሻ݄,							 
݊ ൌ 0,1, … , ,ܰ	݁ݎ݄݁ݓ	ܰ ,଴ݔ  	݀݊ܽ	݊݁ݒ݅݃	݁ݎܽ	଴ݕ

݄ ൌ ௫೙ି௫బ	

ே
  .݁ݖ݅ݏ	݌݁ݐݏ	݄݁ݐ	ݏ݅	

A. The Consistency Property of the Scheme 

The conventional one step integrator for the Initial value 
problem is generally described according to [12] as 

 
௡ାଵݕ ൌ ௡ݕ ൅ 	݄∅ሺݔ௡, ,௡ݕ ݄ሻ		       (29) 

 
By subtracting 	ݕ௡ from both sides of (28) we obtain 
 

௡ାଵݕ െ ௡ݕ ൌ 	݄∅ሺݔ௡, ,௡ݕ ݄ሻ                                (30) 
 
Divide both sides of (30) by h, we have 
 

௡ାଵݕ െ ௡ݕ
݄

	ൌ 	
	݄∅ሺݔ௡, ,௡ݕ ݄ሻ

݄
 

௬೙శభି௬೙
௛

	ൌ ∅ሺݔ௡, ,௡ݕ ݄ሻ		                             (31) 
 
If 

 ∅ሺݔ௡, ,௡ݕ ݄ሻ ൌ ݂ሺݔ,  ሻ ,                              (32)ݕ
 
We then say that the given integrator formula (scheme) is 

consistent with the Initial value problem under consideration. 
Now to show this with respect to the scheme derived above, 

subtract ݕ௡ from both sides of (28) 
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௡ାଵݕ െ ௡ݕ ൌ
଺௬೙ర

଺௬೙
యି଺௛௬೙

మ௬೙
ᇲା଺௛మ௬೙ሺ௬೙

ᇲ ሻమିଷ௛మ௬೙
మ௬೙

ᇲᇲା଺௛య௬೙
ᇲ ௬೙௬೙

ᇲᇲି଺௛యሺ௬೙
ᇲ ሻయି௛య௬೙

ᇲᇲᇲ௬೙
మ െ

௬೙
ଵ	

           (33) 

                                                                      

ൌ
௡ସݕ6 െ ௡ସݕ6 ൅ ௡ᇱݕ௡ଷݕ6݄ െ 6݄ଶݕ௡ଶሺݕ௡ᇱ ሻଶ ൅ 3݄ଶݕ௡ଷݕ௡ᇱᇱ െ 6݄ଷݕ௡ଶݕ௡ᇱݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ଷሺݕ௡ᇱ ሻ ൅ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ

௡ݕ6
ଷ െ ௡ᇱݕ௡ଶݕ6݄ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଶݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ᇱݕ௡ݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻଷ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶ

 

 

௡ାଵݕ െ ௡ݕ ൌ
଺௬೙రି଺௬೙రା଺௛௬೙య௬೙ᇲି଺௛మ௬೙మሺ௬೙ᇲ ሻమାଷ௛మ௬೙య௬೙ᇲᇲି଺௛య௬೙మ௬೙ᇲ ௬೙ᇲᇲା଺௛య௬೙యሺ௬೙ᇲ ሻା௛య௬೙ᇲᇲᇲ௬೙య

଺௬೙
యି଺௛௬೙

మ௬೙
ᇲା଺௛మ௬೙ሺ௬೙

ᇲ ሻమିଷ௛మ௬೙
మ௬೙

ᇲᇲା଺௛య௬೙
ᇲ௬೙௬೙

ᇲᇲି଺௛యሺ௬೙
ᇲ ሻయି௛య௬೙

ᇲᇲᇲ௬೙
మ 	           (34) 

 

௡ାଵݕ െ ௡ݕ ൌ
௛ሾ଺௬೙య௬೙ᇲି଺௛௬೙మሺ௬೙ᇲ ሻమାଷ௛௬೙య௬೙ᇲᇲି଺௛మ௬೙మ௬೙ᇲ ௬೙ᇲᇲା଺௛మ௬೙యሺ௬೙ᇲ ሻା௛మ௬೙ᇲᇲᇲ௬೙యሿ

଺௬೙
యି଺௛௬೙

మ௬೙
ᇲା଺௛మ௬೙ሺ௬೙

ᇲ ሻమିଷ௛మ௬೙
మ௬೙

ᇲᇲା଺௛య௬೙௬೙
ᇲ ௬೙

ᇲᇲି଺௛యሺ௬೙
ᇲ ሻି௛య௬೙

ᇲᇲᇲ௬೙
మ             (35) 

 
Divide both sides of (35) by h, 
 

௬೙శభି௬೙
௛

ൌ ଺௬೙య௬೙ᇲ ି଺௛௬೙మሺ௬೙ᇲ ሻమାଷ௛௬೙య௬೙ᇲᇲି଺௛మ௬೙మ௬೙ᇲ ௬೙ᇲᇲା଺௛మ௬೙యሺ௬೙ᇲ ሻା௛మ௬೙ᇲᇲᇲ௬೙య

଺௬೙
యି଺௛௬೙

మ௬೙
ᇲ ା଺௛మ௬೙ሺ௬೙

ᇲ ሻమିଷ௛మ௬೙
మ௬೙

ᇲᇲା଺௛య௬೙௬೙
ᇲ ௬೙

ᇲᇲି଺௛యሺ௬೙
ᇲ ሻି௛య௬೙

ᇲᇲᇲ௬೙
మ             (36) 

 
As h tends to zero yields 
 

௡ାଵݕ െ ௡ݕ
݄

ൌ
௡ᇱݕ௡ଷݕ6

௡ݕ6
ଷ  

௬೙శభି௬೙
௛

ൌ ௡ᇱݕ                                  (37) 
 
which implies that (32) is satisfied and thus the scheme (28) is 
consistent. 

B. The Stability Property of the Scheme 

We use the general form of the scheme to investigate the 
stability property 

 

௡ା௛ݕ ൌ 	
௬೙శ೓షభ

ሺ௘೛ା∑ ௕ೕ௫೙శ೓
ೕ ሻೖ

ೕసభ

                                         (38) 

 
The theoretical solution y(x) is given as 
 

௡ା௛ሻݔሺݕ ൌ 	
௬ሺ௫೙శ೓షభሻ

ሺ௘೛ା∑ ௕ೕ௫೙శ೓
ೕ ሻೖ

ೕసభ

൅ 	 ௡ܶା௛                      (39) 

 
By subtracting (38) from (39), we obtain 

 
௡ା௛ሻݔሺݕ െ ௡ା௛ݕ ൌ

௬ሺ௫೙శ೓షభሻ

ሺ௘೛ା∑ ௕ೕ௫೙శ೓
ೕ ሻೖ

ೕసభ

	െ	
௬೙శ೓షభ

ሺ௘೛ା∑ ௕ೕ௫೙శ೓
ೕ ሻೖ

ೕసభ

൅ 	 ௡ܶା௛   (40) 

                                               
But the globalization error associated with general one-step 
scheme (28) is given by 

 
݁௡ା௛ ൌ ݕ௡ା௛ െ  ሺ௡ା௛ሻݕ

 
Now by adopting (40) on (39) and simplifying, we obtain 

 

݁௡ା௛ ൌ 	
௘೙శ೓షభ

ሺ௘೛ା∑ ௕ೕ௫೙శ೓
ೕ ሻೖ

ೕసభ
൅	 ௡ܶା௛                           (41) 

 
But since p=0 is a constant, then ݁௣=1. Hence, 

 

݁௡ା௛ ൌ 	
௘೙శ೓షభ

ଵା∑ ௕ೕ௫೙శ೓
ೕೖ

ೕసభ
൅	 ௡ܶା௛                     (42) 

 
Taking the modulus of both sides, yields  

 

| ଵ

		ଵା∑ ௕ೕ௫೙శ೓
ೕೖ

ೕసభ 								
|= ଵ

		ଵା∑ ௕ೕ௫೙శ೓
ೕೖ

ೕసభ 								
 

 

By setting, Q=|	1 ൅ ∑ ௝ܾݔ௡ା௛
௝௞

௝ୀଵ |, we have 
 

ቤ
ଵ

		ଵା∑ ௕ೕ௫೙శ೓
ೕೖ

ೕసభ 								
ቤ ൌ

ଵ

ொ
ൌ  (43)                       	ܯ

 
Then, 

|݁௡ା௛| ൑ |௡ା௛݁|ܯ ൅ | ௡ܶା௛| 
 
Let T= supሺ ௡ܶା௛ሻ and M<1 similarly by setting 
 

௡ା௛ܧ ൌ sup ݁௡ା௛, 
 

Then, the inequality modifies into 0<n<∞ 
 

௡ା௛ܧ ൑ ௡ା௛ିଵܧܯ ൅ ܶ 
 
Hence for h=1, we have 
 

௡ାଵܧ ൑ ௡ܧܯ ൅ ܶ 
 
For h=2, 
 

௡ାଶܧ ൑ ௡ܧଶܯ ൅ܶܯ ൅ ܶ 
 
By following this trend, it could be seen that 

 
௡ା௛ܧ ൑ ௡ା௛ିଵܧ௞ܯ ൅ ∑ ௥ܶ௥ୀ଴ܯ        (44) 

 

Since M<1, then as n tends to infinity, ܧ௡ା௛ ⟶0 

C. Convergence Property of the Scheme 

Having tested for the consistency and stability of the 
method, we can conclude that the convergence property is also 
satisfied. 
Theorem: Let ݕ௡ ൌ and ݈௡	௡ሻݔሺݕ ൌ ݈ሺݔ௡ሻ  denote two different 
numerical solutions of differential equation (1) with initial 
conditions specified as ݕሺݔ଴ሻ ൌ ଴ሻݔሺ݈	݀݊ܽ	ߤ ൌ ߤ ∗	respectively, 
such that |ߤ െ ߤ ∗| ൏ ,		ߝ	 ߝ ൐ 0. If the two numerical estimates 
are generated by the integration scheme (28) 

We have  
 

௡ାଵݕ ൌ ௡ݕ ൅ ݄∅ሺݔ௡, ,௡ݕ ݄ሻ 
݈௡ାଵ ൌ ݈௡ ൅ ݄∅ሺݔ௡, ݈௡, ݄ሻ 
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The condition |ݕ௡ାଵ െ	 ݈௡ାଵ| ൑ ߤ|݇ െ ߤ ∗| is the necessary 
and sufficient condition that the method/scheme is stable and 

convergent. 
Proof: From (34) 

 

௡ାଵݕ െ ௡ݕ ൌ
௡ସݕ6 െ ௡ସݕ6 ൅ ௡ᇱݕ௡ଷݕ6݄ െ 6݄ଶݕ௡ଶሺݕ௡ᇱ ሻଶ ൅ 3݄ଶݕ௡ଷݕ௡ᇱᇱ െ 6݄ଷݕ௡ଶݕ௡ᇱݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ሺݕ௡ᇱ ሻ ൅ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ

௡ݕ6
ଷ െ ௡ᇱݕ௡ଶݕ6݄ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଶݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ᇱݕ௡ݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻଷ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶ

 

 
Adding ݕ௡ to both sides, we have that, 

 

௡ାଵݕ ൌ ௡ݕ ൅
௡ସݕ6 െ ௡ସݕ6 ൅ ௡ᇱݕ௡ଷݕ6݄ െ 6݄ଶݕ௡ଶሺݕ௡ᇱ ሻଶ ൅ 3݄ଶݕ௡ଷݕ௡ᇱᇱ െ 6݄ଷݕ௡ଶݕ௡ᇱݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ሺݕ௡ᇱ ሻ ൅ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ

௡ݕ6
ଷ െ ௡ᇱݕ௡ଶݕ6݄ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଶݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ᇱݕ௡ݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻଷ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶ

 

௡ାଵݕ ൌ
݊ݕ6

4 െ ݊ݕ6݄3
݊ݕ3

′ ൅ ݊ݕ6݄2
2൫݊ݕ

′ ൯
2
െ ݊ݕ3݄2

݊ݕ3
′′ ൅ ݊ݕ6݄3

݊ݕ2
′ ݊ݕ

′′ െ ݊ݕ൫݊ݕ6݄3
′ ൯ െ ݊ݕ3݄

݊ݕ′′′
3 ൅ ݄ሾ6݊ݕ

݊ݕ3
′ െ ݊ݕ6݄

2൫݊ݕ
′ ൯

2
൅ ݊ݕ3݄

݊ݕ3
′′ െ ݊ݕ6݄2

݊ݕ2
′ ݊ݕ

′′ ൅ ݊ݕ൫݊ݕ6݄2
′ ൯ ൅ ݊ݕ3݄

݊ݕ′′′
3

݊ݕ6
3 െ ݊ݕ6݄

݊ݕ2
′ ൅ ݊ݕ൫݊ݕ6݄2

′ ൯
2
െ ݊ݕ3݄2

݊ݕ2
′′ ൅ ݊ݕ6݄3

′ ݊ݕ݊ݕ
′′ െ 6݄3൫݊ݕ

′ ൯ െ ݊ݕ3݄
݊ݕ′′′

2

  

ൌ
௡ସݕ6 െ 6݄ଷݕ௡ଷݕ௡ᇱ ൅ 6݄ଶݕ௡ଶሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଷݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ଶݕ௡ᇱݕ௡ᇱᇱ െ 6݄ଷݕ௡ሺݕ௡ᇱ ሻ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ ൅ ݄ሾ6ݕ௡ଷݕ௡ᇱ െ ௡ᇱݕ௡ଶሺݕ6݄ ሻଶ ൅ ௡ᇱᇱݕ௡ଷݕ3݄ െ 6݄ଶݕ௡ଶݕ௡ᇱݕ௡ᇱᇱ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻ ൅ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ

௡ଷݕ6 െ 6݄ଷݕ௡ଶݕ௡ᇱ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଶݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ᇱݕ௡ݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶ
 

 

௡ାଵݕ								 ൌ
௡ସݕ6 െ 6݄ଷݕ௡ଷݕ௡ᇱ െ 6݄ଷݕ௡ሺݕ௡ᇱ ሻ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ ൅ ௡ᇱݕ௡ଷݕ6݄ ൅ 6݄ଷሺݕ௡ᇱ ሻଷ

௡ݕ6	
ଷ െ 6݄ଷݕ௡ଶݕ௡ᇱ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଶݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ᇱݕ௡ݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶ

 

 
Similarly, from (29) 

				݈௡ାଵ ൌ ݈௡ ൅ ݄∅ሺݔ௡, ݈௡, ݄ሻ 
				݈௡ାଵ െ ݈௡ ൌ ݄∅ሺݔ௡, ݈௡, ݄ሻ 

݈௡ାଵ െ ݈௡ ൌ
6݈௡ସ െ 6݈௡ସ ൅ 6݄݈௡ଷ݈௡ᇱ െ 6݄ଶ݈௡ଶሺ݈௡ᇱ ሻଶ ൅ 3݄ଶ݈௡ଷ݈௡ᇱᇱ െ 6݄ଷ݈௡ଶ݈௡ᇱ ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ሺ݈௡ᇱ ሻ ൅ ݄ଷ݈௡ᇱᇱᇱ݈௡ଷ

6݈௡
ଷ െ 6݄݈௡ଶ݈௡ᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻଶ െ 3݄ଶ݈௡ଶ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ᇱ ݈௡݈௡ᇱᇱ െ 6݄ଷሺ݈௡ᇱ ሻଷ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଶ

 

 
Adding ݈௡ to both sides we have that, 

 

݈௡ାଵ ൌ
݈௡
1
൅

݄ሾ6݈௡ଷ݈௡ᇱ െ 6݄݈௡ଶሺ݈௡ᇱ ሻଶ ൅ 3݄݈௡ଷ݈௡ᇱᇱ െ 6݄ଶ݈௡ଶ݈௡ᇱ ݈௡ᇱᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻ ൅ ݄ଷ݈௡ᇱᇱᇱ݈௡ଷ

6݈௡
ଷ െ 6݄݈௡ଶ݈௡ᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻଶ െ 3݄ଶ݈௡ଶ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ᇱ ݈௡݈௡ᇱᇱ െ 6݄ଷሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଶ

 

݈௡ାଵ ൌ
6݈݊

4 െ 6݄3݈݊
3݈݊
′ ൅ 6݄2݈݊

2൫݈݊
′ ൯

2
െ 3݄2݈݊

3݈݊
′′ ൅ 6݄3݈݊

2݈݊
′ ݈݊
′′ െ 6݄3݈݊൫݈݊

′ ൯ െ ݄3݈݊
′′′݈݊

3 ൅ ݄ሾ6݈݊
3݈݊
′ െ 6݄݈݊

2൫݈݊
′ ൯

2
൅ 3݄݈݊

3݈݊
′′ െ 6݄2݈݊

2݈݊
′ ݈݊
′′ ൅ 6݄2݈݊൫݈݊

′ ൯ ൅ ݄3݈݊
′′′݈݊

3

6݈݊
3 െ 6݄݈݊

2݈݊
′ ൅ 6݄2݈݊൫݈݊

′ ൯
2
െ 3݄2݈݊

2݈݊
′′ ൅ 6݄3݈݊

′ ݈݈݊݊
′′ െ 6݄3൫݈݊

′ ൯ െ ݄3݈݊
′′′݈݊

2
 

 

ൌ
6݈௡ସ െ 6݄ଷ݈௡ଷ݈௡ᇱ ൅ 6݄ଶ݈௡ଶሺ݈௡ᇱ ሻଶ െ 3݄ଶ݈௡ଷ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ଶ݈௡ᇱ ݈௡ᇱᇱ െ 6݄ଷ݈௡ሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଷ ൅ ݄ሾ6݈௡ଷ݈௡ᇱ െ 6݄݈௡ଶሺ݈௡ᇱ ሻଶ ൅ 3݄݈௡ଷ݈௡ᇱᇱ െ 6݄ଶ݈௡ଶ݈௡ᇱ ݈௡ᇱᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻ ൅ ݄ଷ݈௡ᇱᇱᇱ݈௡ଷ

6݈௡
ଷ െ 6݄݈௡ଶ݈௡ᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻଶ െ 3݄ଶ݈௡ଶ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ᇱ ݈௡݈௡ᇱᇱ െ 6݄ଷሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଶ

 

 

݈௡ାଵ ൌ
6݈௡ସ െ 6݄ଷ݈௡ଷ݈௡ᇱ െ 6݄ଷ݈௡ሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଷ ൅ 6݄݈௡ଷ݈௡ᇱ ൅ 6݄ଷሺ݈௡ᇱ ሻଷ

6݈௡
ଷ െ 6݄ଷ݈௡ଶݕ௡ᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻଶ െ 3݄ଶ݈௡ଶ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ᇱ ݈௡݈௡ᇱᇱ െ 6݄ଷሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଶ

 

 

௡ାଵݕ			 െ		 ݈௡ାଵ ൌ
௡ସݕ6 െ 6݄ଷݕ௡ଷݕ௡ᇱ െ 6݄ଷݕ௡ሺݕ௡ᇱ ሻ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଷ ൅ ௡ᇱݕ௡ଷݕ6݄ ൅ 6݄ଷሺݕ௡ᇱ ሻଷ

௡ݕ6
ଷ െ 6݄ଷݕ௡ଶݕ௡ᇱ ൅ 6݄ଶݕ௡ሺݕ௡ᇱ ሻଶ െ 3݄ଶݕ௡ଶݕ௡ᇱᇱ ൅ 6݄ଷݕ௡ᇱݕ௡ݕ௡ᇱᇱ െ 6݄ଷሺݕ௡ᇱ ሻ െ ݄ଷݕ௡ᇱᇱᇱݕ௡ଶ

				െ	 

 
6݈௡ସ െ 6݄ଷ݈௡ଷ݈௡ᇱ െ 6݄ଷ݈௡ሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଷ ൅ 6݄݈௡ଷ݈௡ᇱ ൅ 6݄ଷሺ݈௡ᇱ ሻଷ	

6݈௡
ଷ െ 6݄ଷ݈௡ଶݕ௡ᇱ ൅ 6݄ଶ݈௡ሺ݈௡ᇱ ሻଶ െ 3݄ଶ݈௡ଶ݈௡ᇱᇱ ൅ 6݄ଷ݈௡ᇱ ݈௡݈௡ᇱᇱ െ 6݄ଷሺ݈௡ᇱ ሻ െ ݄ଷ݈௡ᇱᇱᇱ݈௡ଶ

 

 
As ݄ →  	݁ݒ݄ܽ	݁ݓ,0

௡ାଵݕ െ		 ݈௡ାଵ ൌ
௡ସݕ6

௡ݕ6
ଷ െ

6݈௡ସ

6݈௡
ଷ 

 
௡ାଵݕ| െ		 ݈௡ାଵ| ൌ ௡ݕ| െ ݈௡| 

 
௡ାଵݕ| െ		 ݈௡ାଵ| ൌ ௡ݕ|1 െ ݈௡| 

 
But since the initial conditions are given as ݕሺݔ଴ሻ ൌ
଴ሻݔሺ݈	݀݊ܽ	ߤ ൌ ߤ ∗	 respectively, such that|ߤ െ ߤ ∗| ൏ ,			ߝ	 ߝ ൐ 0. 
Hence,  

 
௡ାଵݕ| െ		 ݈௡ାଵ| ൌ ߤ|1 െ ߤ ∗|         (45) 

D. Local Truncation Error and Order of the Scheme 

We define the local truncation error for the Inverse 
polynomial method as the error committed in the most recent 
integration step, on a single integration step. The local 
truncation error in pth order of the inverse polynomial method 
is ሺ݄ܿ௣ାଵሻ where c is some constant bound on c for p=2,3,4 
also exist but since we only focus on the third step of the 
method, we can say this method is of third order and with 
local truncation error O(݄ସ) 
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V. IMPLEMENTATION, RESULTS, RECOMMENDATION AND 

CONCLUSION 

A. Implementation and Numerical Results 

It is always necessary to demonstrate the applicability and 
suitability of every newly proposed numerical method. Thus, 
to do this, the method was rewritten in an algorithm form and 
test runs were made with scheme for problems listed below 
using MATLAB programming language and it was 
implemented. However, the numerical solutions contained 
here are therefore compared with the corresponding theoretical 
solutions. 
Example 1: We consider the IVP, 
 

y' =1 + y2; y(0) = 1                    (46) 
 

whose exact solution is ݕሺݔሻ ൌ tan ቀݔ ൅
గ

ସ
ቁ,		in the interval 

0 ൑ ݔ ൑ 1. 
The numerical results are shown below in the table at h = 

0.025. 
 

TABLE I 
RESULTS GENERATED FROM THE NEW SCHEME 

 ௡ New Scheme Exact Solution Errorݔ

0.0000 1.0000 1.0000 0.0000 

0.0250 1.0512 1.0520 0.0008 

0.0500 1.1051 1.1061 0.0010 

0.0750 1.1621 1.1632 0.0011 

0.1000 1.2225 1.2238 0.0013 

0.1250 1.2867 1.2883 0.0016 

0.1500 1.3551 1.3570 0.0019 

0.1750 1.4283 1.4305 0.0022 

0.2000 1.5069 1.5095 0.0026 

0.2250 1.5917 1.5947 0.0030 

 
Example 2: We consider IVP called the test function  
 

ᇱݕ ൌ ;ݕ ሺ0ሻݕ	 ൌ 1                                              (47) 
 
whose exact solution is given as: ݕሺݔሻ ൌ ݁௫ in the interval 
0 ൑ ݔ ൑ 1. 

The numerical results is shown below in the table at h=0.25 
 

TABLE II 
COMPARATIVE RESULTS ANALYSIS 

 ௡ሻݔሺݕ ௡ RK-1 RK-2 New schemeݔ
0.0000 1.0000 1.0000 1.0000 1.0000 

0.2500 1.2500 1.2813 1.2843 1.2840 

0.5000 1.5625 1.6416 1.6494 1.6487 

0.7500 1.9531 2.1033 2.1183 2.1170 

1.0000 2.4414 2.6949 2.7205 2.7183 

 

Example 3: We consider the IVP 
 

ᇱݕ  ൌ ௬మ

௫మାଵ
;y(0)=1                                               (48) 

 
whose exact solution is given as: 
 

ሻݔሺݕ ൌ െ ଵ

ሺ୲ୟ୬షభ ௫ሻିଵ
   in the interval  0 ൑ ݔ ൑ 1 at h=0.1 

TABLE III 
RESULTS GENERATED FROM THE NEW SCHEME 

 ௡ New Scheme Exact Solution Errorݔ

0.0000 1.0000 1.0000 0.0000 

0.1000 1.1103 1.1107 0.0004 

0.2000 1.2443 1.2459 0.0016 

0.3000 1.4070 1.4113 0.0043 

0.4000 1.6047 1.6142 0.0095 

0.5000 1.8458 1.8644 0.0186 

0.6000 2.1414 2.1759 0.0345 

0.7000 2.5071 2.5689 0.0618 

0.8000 2.9652 3.0745 0.1093 

0.9000 3.5487 3.7427 0.1940 

B. Discussion of Results and Conclusion  

We have successfully developed an inverse polynomial 
method for the numerical solution of first order ordinary 
differential equations. Analysis of the basic properties of the 
method showed that it is consistent, convergence and 
absolutely stable, confirming that the method is suitable for 
the numerical solution of non-stiff, stiff, and ordinary equation 
with singularites. Numerical results of the method compared 
favourably with the existing methods like the Modified 
Euler’s Method and Runge-Kutta method of order 4. On a 
general note, the results show a measure of convergence 
towards the theoretical solution. 

It is to be noted that the 1st and 2nd stage of polynomial 
method by [13] have derivative advantages over our new 
scheme in the sense that fewer derivative and also there is no 
much rigorous analysis of the Taylor’s series method when 
compared with this new 3rd stage scheme. However, it enjoys 
higher order advantages over that of [13] first and second 
stage which are of order one and two respectively while this 
method is of order three.  
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