Search results for: durability of chemical heat storage material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4512

Search results for: durability of chemical heat storage material

2562 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: Finite element analysis, soil-blade contact modeling, blade force, experimental results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
2561 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence

Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz

Abstract:

Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.

Keywords: Automotive brake, friction material, brake dynamometer, compressibility test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2560 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

Authors: Jiri Plocek, Petr Holec, Simona Kubickova, Barbara Pacakova, Irena Matulkova, Alice Mantlikova, Ivan Nemec, Daniel Niznansky, Jana Vejpravova

Abstract:

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nanocrystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nanocomposites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900−1200 ◦C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nanocrystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ∼4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nanoparticles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nanocrystals were found to be just moderately modified in comparison to the bulk phases.

Keywords: Chromite, Fourier transform infrared spectroscopy, agnetic properties, nanocomposites, Raman spectroscopy, Rietveld refinement, sol-gel method, spinel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
2559 Phytochemical Profiles and Antioxidant Activity of Selected Indigenous Vegetables in Northern Mindanao, Philippines

Authors: Renee P. Baang, Romeo M. Del Rosario, Nenita D. Palmes

Abstract:

The crude methanol extracts of five indigenous vegetables namely, Amarathus tricolor, Basella rubra L., Chochurus olitorius L., Ipomea batatas, and Momordica chuchinensis L., were examined for their phytochemical profile and antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The values for DPPH radical scavenging activity ranged from 7.6-89.53% with B. rubra and I. batatas having the lowest and highest values, respectively. The total flavonoid content of all five indigenous vegetables ranged from 74.65-277.3 mg quercetin equivalent per gram of dried vegetable material while the total phenolic content ranged from 1.93-6.15 mg gallic acid equivalent per gram dried material. Phytochemical screening revealed the presence of steroids, flavonoids, saponins, tannins, carbohydrates and reducing sugars, which may also be associated with the antioxidant activity shown by these indigenous vegetables.

Keywords: Antioxidant, DPPH radical scavenging activity, Philippine indigenous vegetables, phytochemical screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4788
2558 Topology Optimization of Structures with Web-Openings

Authors: D. K. Lee, S. M. Shin, J. H. Lee

Abstract:

Topology optimization technique utilizes constant element densities as design parameters. Finally, optimal distribution contours of the material densities between voids (0) and solids (1) in design domain represent the determination of topology. It means that regions with element density values become occupied by solids in design domain, while there are only void phases in regions where no density values exist. Therefore the void regions of topology optimization results provide design information to decide appropriate depositions of web-opening in structure. Contrary to the basic objective of the topology optimization technique which is to obtain optimal topology of structures, this present study proposes a new idea that topology optimization results can be also utilized for decision of proper web-opening’s position. Numerical examples of linear elastostatic structures demonstrate efficiency of methodological design processes using topology optimization in order to determinate the proper deposition of web-openings.

Keywords: Topology optimization, web-opening, structure, element density, material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
2557 Application of a Modified BCR Approach to Investigate the Mobility and Availability of Trace Elements (As, Ba, Cd, Co, Cr, Cu, Mo,Ni, Pb, Zn, and Hg) from a Solid Residue Matrix Designed for Soil Amendment

Authors: Mikko Mäkelä, Risto Pöykiö, Gary Watkins, Hannu Nurmesniemi, Olli Dahl

Abstract:

Trace element speciation of an integrated soil amendment matrix was studied with a modified BCR sequential extraction procedure. The analysis included pseudo-total concentration determinations according to USEPA 3051A and relevant physicochemical properties by standardized methods. Based on the results, the soil amendment matrix possessed neutralization capacity comparable to commercial fertilizers. Additionally, the pseudo-total concentrations of all trace elements included in the Finnish regulation for agricultural fertilizers were lower than the respective statutory limit values. According to chemical speciation, the lability of trace elements increased in the following order: Hg < Cr < Co < Cu < As < Zn < Ni < Pb < Cd < V < Mo < Ba. The validity of the BCR approach as a tool for chemical speciation was confirmed by the additional acid digestion phase. Recovery of trace elements during the procedure assured the validity of the approach and indicated good quality of the analytical work.

Keywords: BCR, bioavailability, trace element, industrialresidue, sequential extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2556 Laboratory Investigation of Expansive Soil Stabilized with Calcium Chloride

Authors: Magdi M. E. Zumrawi, Khalid A. Eltayeb

Abstract:

Chemical stabilization is a technique commonly used to improve the expansive soil properties. In this regard, an attempt has been made to evaluate the influence of Calcium Chloride (CaCl2) stabilizer on the engineering properties of expansive soil. A series of laboratory experiments including consistency limits, free swell, compaction, and shear strength tests were performed to investigate the effect of CaCl2 additive with various percentages 0%, 2%, 5%, 10% and 15% for improving expansive soil. The results obtained shows that the increase in the percentage of CaCl2decreased the liquid limit and plasticity index leading to significant reduction in the free swell index. This, in turn, increased the maximum dry density and decreased the optimum moisture content which results in greater strength. The unconfined compressive strength of soil stabilized with 5% CaCl2 increased approximately by 50% as compared to virgin soil. It can be concluded that CaCl2 had shown promising influence on the strength and swelling properties of expansive soil, thereby giving an advantage in improving problematic expansive soil.

Keywords: Calcium chloride, chemical stabilization, expansive soil, improving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3029
2555 Photomechanical Analysis of Wooden Testing Bodies under Flexural Loadings

Authors: J. Gazzola, I. M. Dal Fabbro, J. Soriano, M. V. G. Silva, S. Rodrigues

Abstract:

Application of wood in rural construction is diffused all around the world since remote times. However, its inclusion in structural design deserves strong support from broad knowledge of material properties. The pertinent literature reveals the application of optical methods in determining the complete field displacement on bodies exhibiting regular as well as irregular surfaces. The use of moiré techniques in experimental mechanics consists in analyzing the patterns generated on the body surface before and after deformation. The objective of this research work is to study the qualitative deformation behavior of wooden testing specimens under specific loading situations. The experiment setup follows the literature description of shadow moiré methods. Results indicate strong anisotropy influence of the generated displacement field. Important qualitative as well as quantitative stress and strain distribution were obtained wooden members which are applicable to rural constructions.

Keywords: Moiré methods, wooden structural material, rural constructions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2554 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: Automobiles, welding, corrosion, lap joints, Micro XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
2553 Fabrication of Cesium Iodide Columns by Rapid Heating Method

Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang

Abstract:

This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.

Keywords: Cesium iodide, high efficiency, vapor, rapid heating, crystal column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
2552 Plastic Waste Utilization as Asphalt Binder Modifier in Asphalt Concrete Pavement

Authors: H. Naghawi, R. Al-Ajarmeh, R. Allouzi, A. AlKlub, K. Masarwah, A. AL-Quraini, M. Abu-Sarhan

Abstract:

The main objective of this paper is to evaluate the use of plastic waste as a low cost asphalt binder modifier. For this purpose Marshall mix design procedure was used. Marshall mix design procedure seeks to select the Optimum Binder Content (OBC) to be added to a specific aggregate blend resulting in a mixture that satisfies the desired properties of strength and durability. In order to evaluate the plastic waste modified (PWM) asphalt mixtures, the OBC for the conventional asphalt mix was first identified, and then different percentages of crushed plastic waste by weight of the identified OBC were tested. Marshall test results for the modified asphalt mixtures were analyzed to find the optimum PWM content. Finally, the static indirect tensile strength (IDT) was determined for all mixtures using the splitting tensile test. It was found that PWM content of 7.43% by weight of OBC is recommended as the optimum PWM content needed for enhancing the performance of asphalt mixtures. It enhanced stability by 42.56%, flow by 89.91% and strength by 13.54%. This would lead to a more durable pavement by improving the pavement resistance to fatigue cracking and rutting.

Keywords: Binder content modifier, Marshall test, plastic waste, polyethylene terephthalate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
2551 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
2550 Analytical Solution for Compressible Gas Flow Inside a Two-Dimensional Poiseuille Flow in Microchannels with Constant Heat Flux Including the Creeping Effect

Authors: Amir Reza Ghahremani, Salman SafariMohsenabad, Mohammad Behshad Shafii

Abstract:

To achieve reliable solutions, today-s numerical and experimental activities need developing more accurate methods and utilizing expensive facilities, respectfully in microchannels. The analytical study can be considered as an alternative approach to alleviate the preceding difficulties. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. The perturbation theory has been used by many researchers to analyze microflows. In present work, a compressible microflow with constant heat flux boundary condition is analyzed. The flow is assumed to be fully developed and steady. The Mach and Reynolds numbers are also assumed to be very small. For this case, the creeping phenomenon may have some effect on the velocity profile. To achieve robustness solution it is assumed that the flow is quasi-isothermal. In this study, the creeping term which appears in the slip boundary condition is formulated by different mathematical formulas. The difference between this work and the previous ones is that the creeping term is taken into account and presented in non-dimensionalized form. The results obtained from perturbation theory are presented based on four non-dimensionalized parameters including the Reynolds, Mach, Prandtl and Brinkman numbers. The axial velocity, normal velocity and pressure profiles are obtained. Solutions for velocities and pressure for two cases with different Br numbers are compared with each other and the results show that the effect of creeping phenomenon on the velocity profile becomes more important when Br number is less than O(ε).

Keywords: Creeping Effect, Microflow, Slip, Perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
2549 Effects of Thread Dimensions of Functionally Graded Dental Implants on Stress Distribution

Authors: Kaman M. O., Celik N.

Abstract:

In this study, stress distributions on dental implants made of functionally graded biomaterials (FGBM) are investigated numerically. The implant body is considered to be subjected to axial compression loads. Numerical problem is assumed to be 2D, and ANSYS commercial software is used for the analysis. The cross section of the implant thread varies as varying the height (H) and the width (t) of the thread. According to thread dimensions of implant and material properties of FGBM, equivalent stress distribution on the implant is determined and presented with contour plots along with the maximum equivalent stress values. As a result, with increasing material gradient parameter (n), the equivalent stress decreases, but the minimum stress distribution increases. Maximum stress values decrease with decreasing implant radius (r). Maximum von Mises stresses increases with decreasing H when t is constant. On the other hand, the stress values are not affected by variation of t in the case of H = constant.

Keywords: Functionally graded biomaterials, dental implant finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3076
2548 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
2547 Shelf Life Extension of Milk Pomade Sweet – Sherbet with Crunchy Peanut Chips by MAP in Various Packaging Materials

Authors: Eva Vorma, Sandra Muizniece-Brasava, Lija Dukalska, Janis Skalbe

Abstract:

The objective of the research was to evaluate the hardness stability of milk pomade sweets packed in several packaging materials (OPP, Multibarrier 60 HFP, BIALON 65 HFP, BIALON 50 HFP, ECOLEAN) by several packaging technologies – modified atmosphere (MAP) (consisting of 30% CO2+70% N2; 30% N2+70% CO2 and 100% CO2) and control – in air ambiance. Samples were stored at the room temperature +21±1 °C. The studies of the samples were carried out before packaging and after 2, 4, 6, 8, and 10 storage weeks.

Keywords: packaging, shelf life, sherbet with crunchy peanutchips, hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
2546 Open Cloud Computing with Fault Tolerance

Authors: K. Zuva, T. Zuva, K. O. M. Mapoka

Abstract:

Cloud Computing (CC) has become one of the most talked about emerging technologies that provides powerful computing and large storage environments through the use of the Internet. Cloud computing provides different dynamically scalable computing resources as a service. It brings economic benefits to individuals and businesses that adopt the technology. In theory adoption of cloud computing reduces capital and operational expenditure on information technology. For this to be a reality there is need to solve some challenges and at the same time addressing concerns that consumers have about cloud computing. This paper looks at Cloud Computing in general then highlights the challenges of Cloud Computing and finally suggests solutions to some of the challenges.

Keywords: Cloud Computing, SaaS, PaaS, IaaS, Internet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
2545 Investigation of Scour Depth at Bridge Piers using Bri-Stars Model in Iran

Authors: Gh. Saeidifar, F. Raeiszadeh

Abstract:

BRI-STARS (BRIdge Stream Tube model for Alluvial River Simulation) program was used to investigate the scour depth around bridge piers in some of the major river systems in Iran. Model calibration was performed by collecting different field data. Field data are cataloged on three categories, first group of bridges that their rivers bed are formed by fine material, second group of bridges that their rivers bed are formed by sand material, and finally bridges that their rivers bed are formed by gravel or cobble materials. Verification was performed with some field data in Fars Province. Results show that for wide piers, computed scour depth is more than measured one. In gravel bed streams, computed scour depth is greater than measured scour depth, the reason is due to formation of armor layer on bed of channel. Once this layer is eroded, the computed scour depth is close to the measured one.

Keywords: BRI-STARS, local scour, bridge, computer modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
2544 Comparison Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulators in Artificial Accelerated Salt Fog Ageing Test

Authors: S.Thong-Om, W. Payakcho, J. Grasaesom, A. Oonsivilai, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber outdoor polymer insulators in salt fog ageing test based on IEC 61109. Specimens made ofHTV silicone rubber with ATH content having three different configurations, straight shedsalternated sheds, and incline and alternate sheds, were tested continuously 1000 hrs.in artificial salt fog chamber. Contamination level, reduction of hydrophobicity and hardness measurement were used as physical damaged inspection techniques to evaluate degree of surface deterioration. In addition, chemical changing of tested specimen surface was evaluated by ATR-FTIRto confirm physical damaged inspection. After 1000 hrs.of salt fog test, differences in degree of surface deterioration were observed on all tested specimens. Physical damaged inspection and chemical analysis results confirmed the experimental results as well.

Keywords: Ageing deterioration, Silicone rubber, Polymer Insulator, Salt fog ageing test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
2543 A Case Study on the Efficacy of Technical Laboratory Safety in Polytechnic

Authors: Zulhisyam Salleh, Erita M. Mazlan, Saiful A. Mazlan, Norzainariah A. Hassan, Fizatul A. Patakor

Abstract:

Technical laboratories are typically considered as highly hazardous places in the polytechnic institution when addressing the problems of high incidences and fatality rates. In conjunction with several topics covered in the technical curricular, safety and health precaution should be highlighted in order to connect to few key ideas of being safe. Therefore the assessment of safety awareness in terms of safety and health about hazardous and risks at laboratories is needed and has to be incorporated with technical education and other training programmes. The purpose of this study was to determine the efficacy of technical laboratory safety in one of the polytechnics in northern region. The study examined three related issues that were; the availability of safety material and equipment, safety practice adopted by technical teachers and administrator-s safety attitudes in enforcing safety to the students. A model of efficacy technical laboratory was developed to test the linear relationship between existing safety material and equipment, teachers- safety practice and administrators- attitude in enforcing safety and to identify which of technical laboratory safety issues was the most pertinent factor to realize safety in technical laboratory. This was done by analyzing survey-based data sets particularly those obtained from samples of 210 students in the polytechnic. The Pearson Correlation was used to measure the association between the variables and to test the research hypotheses. The result of the study has found that there was a significant correlation between existing safety material and equipment, safety practice adopted by teacher and administrator-s attitude. There was also a significant relationship between technical laboratory safety and safety practice adopted by teacher and between technical laboratory safety and administrator attitude. Hence, safety practice adopted by teacher and administrator attitude is vital in realizing technical laboratory safety.

Keywords: Polytechnic, Safety attitudes, Safety practices, Technical laboratory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
2542 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC

Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan

Abstract:

Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.

Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5960
2541 Evaluation of the Triticale Flour Blend Dough in the Mixing and Fermentation Processes

Authors: Martins Sabovics, Karina Ruse, Evita Straumite, Ruta Galoburda

Abstract:

The research was accomplished on triticale flour blend, which was made from whole grain triticale, rye, hull-less barley flour and rice, maize flour. The aim of this research was to evaluate physico-chemical and sensory properties of triticale flour blend dough in the mixing and fermentation processes. For dough making was used triticale flour blend, yeast, sugar, salt, and water. In the mixing process ware evaluated moisture, acidity, pH, and dough sensory properties (softness, viscosity, and stickiness), but in the fermentation process ware evaluated volume, moisture, acidity, and pH. During present research was established that increasing fermentation temperature and time, increase dough temperature, volume, moisture, and acidity. The mixing time and fermentation time and temperature have significant effect (p<0.05) on triticale flour blend dough physico-chemical and sensory properties.

Keywords: Dough quality, dough fermentation, dough mixing, triticale flour blend.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
2540 String Searching in Dispersed Files using MDS Convolutional Codes

Authors: A. S. Poornima, R. Aparna, B. B. Amberker, Prashant Koulgi

Abstract:

In this paper, we propose use of convolutional codes for file dispersal. The proposed method is comparable in complexity to the information Dispersal Algorithm proposed by M.Rabin and for particular choices of (non-binary) convolutional codes, is almost as efficient as that algorithm in terms of controlling expansion in the total storage. Further, our proposed dispersal method allows string search.

Keywords: Convolutional codes, File dispersal, Filereconstruction, Information Dispersal Algorithm, String search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
2539 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, Che Hassan C. H., N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal matrix composites (MMCs) attract considerable attention as a result from its ability in providing a high strength, high modulus, high toughness, high impact properties, improving wear resistance and providing good corrosion resistance compared to unreinforced alloy. Aluminium Silicon (Al/Si) alloy MMC has been widely used in various industrial sectors such as in transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is an MMC that had been reinforced with aluminium nitrate (AlN) particle and become a new generation material use in automotive and aerospace sector. The AlN is one of the advance material that have a bright prospect in future since it has features such as lightweight, high strength, high hardness and stiffness quality. However, the high degree of ceramic particle reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density is the main problem which leads to difficulties in machining process. This paper examined the tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 (Titanium diboride) coated carbide cutting tool. The volume of the AlN reinforced particle was 10% and milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were at the cutting speed of (230, 300 and 370m/min, feed rate of 0.8, Depth of Cut (DoC) at 0.4m). The Sometech SV-35 video microscope system used to quantify of the tool wear. The result shown that tool life span increasing with the cutting speeds at (370m/min, feed rate of 0.8mm/tooth and DoC at 0.4mm) which constituted an optimum condition for longer tool life lasted until 123.2 mins. Meanwhile, at medium cutting speed which at 300m/m, feed rate of 0.8mm/tooth and depth of cut at 0.4mm we found that tool life span lasted until 119.86 mins while at low cutting speed it lasted in 119.66 mins. High cutting speed will give the best parameter in cutting AlSi/AlN MMCs material. The result will help manufacturers in machining process of AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated cemented carbide tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
2538 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: Distributed optical strain sensing, geotechnical monitoring, rock bolt stain measurement, bedding shear displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
2537 Space Charge Distribution in 22 kV XLPE Insulated Cable by Using Pulse Electroacoustic Measurement Technique

Authors: N. Ruangkajonmathee, R. Thiamsri, B. Marungsri

Abstract:

This paper presents the experimental results on space charge distribution in cross-linked polyethylene (XLPE) insulating material for 22 kV power distribution system cable by using pulse electroacoustic measurement technique (PEA). Numbers of XLPE insulating material ribbon having thickness 60 μm taken from unused 22 kV high voltage cable were used as specimen in this study. DC electric field stress was applied to test specimen at room temperature (25°C). Four levels of electric field stress, 25 kV/mm, 50 kV/mm, 75 kV/mm and 100 kV/mm, were used. In order to investigate space charge distribution characteristic, space charge distribution characteristics were measured after applying electric field stress 15 min, 30 min and 60 min, respectively. The results show that applied time and magnitude of dc electric field stress play an important role to the formation of space charge.

Keywords: Space charge distribution, pulsed electroacoustic(PEA) technique, cross-linked polyethylene (XLPE), DC electrical fields stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3283
2536 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: Pressing, notch, matrix, flow function, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
2535 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars

Authors: Othman S. Alsheraida, Sherif El-Gamal

Abstract:

Fiber Reinforced Polymer (FRP) is a composite material with exceptional properties that are capable to replace conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars are limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.

Keywords: Anchorage, concrete, epoxy, FRP, pre-stressed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
2534 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
2533 Free Vibration Analysis of Smart FGM Plates

Authors: F.Ebrahimi, A.Rastgo

Abstract:

Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.

Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299