Fabrication of Cesium Iodide Columns by Rapid Heating Method
Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang
Abstract:
This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.
Keywords: Cesium iodide, high efficiency, vapor, rapid heating, crystal column.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130965
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093References:
[1] C.M. Schaefer-Prokop, D.W. De Boo, M. Uffmann, M. Prokop. DR and CR: Recent advances in technology, European Journal of Radiology, 72(2), (2009) 194-201.
[2] A. Koch, C. Raven, P. Spanne, A. Snigirev, X-ray imaging with submicrometer resolution employing transparent luminescent screens, Journal of the Optical Society of America A, 15(7), (1998) 1940-1951.
[3] S Zazubovich. Physics of halide scintillators, Radiation Measurements, 33(5), (2001) 699-704.
[4] A. M. Gurvich, Luminescent screens for mammography, Radiation Measurements, 24(4), (1995) 325-330.
[5] A Koch, H Rosenfeldt, Powder-phosphor screens combined with interference filters for X-ray imaging with increased brightness, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 432(2-3), (1999) 358-363.
[6] U.L. Olsen, X. Badel, J. Linnros, M. Di Michiel, T. Martin, S. Schmidt, H.F. Poulsen, Development of a high-efficiency high-resolution imaging detector for 30–80 keV X-rays, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 576(1), (2007) 52-55.
[7] M. Stampanoni, G. Borchert, P. W., R. Abela, B. Patterson, S. Hunt, D. Vermeulen, P. Rüegsegger, High resolution X-ray detector for synchrotron-based microtomography, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 491(1-2), (2002) 291-301.
[8] A. Ananenko, A. Fedorov, A. Lebedinsky, P. Mateychenko, V. Tarasov, Y. Vidaj, structural dependence of CsI(Tl) film scintillation properties, Semiconductor Physics, Quantum Electronics & Optoelectronics, 7(3), (2004) 297-300.
[9] E. Zych, C. Brecher, and H. Lingertat, Depletion of high-energy carriers in YAG optical ceramic materials, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(11), (1998) 1771-1777.
[10] B.Z. Zhao, X.B. Qin, Z.D. Feng, C.F. Wei, Y. Chen, B.Y. Wang, L. Wei, Performance evaluation of CsI screens for X-ray imaging, Chinese Physics C, 38 (11), (2014) 116003.
[11] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, Journal of Materials Chemistry, 9(12), (1999) 2971-2972.
[12] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, N. Negishi, Preparation of TiO2 fibers with well-organized structures, Journal of Materials Chemistry, 10, (2000) 2005-2006.
[13] G.C. Wood, J.P. O’Sullivan, The Anodizing of Aluminum in Sulphate Solutions, Electrochim. Acta, 15 (1970) 1865-1876.
[14] H. Xing, L. Zhiyuan, W. Kai, L. Yi, Fabrication of Three Dimensional Interconnected Porous Carbons from Branched Anodic Aluminum Oxide Template, Electrochem. Comm., 13 (2011) 1082-1085.
[15] C.C. Chen, D. Fang, Z. Luo, “Fabrication and Characterization of Highly-Ordered Valve-Metal Oxide Nanotubes and Their Derivative Nanostructures”, Review in Nanoscience and Nanotechnology 1, (2012) 229-256.
[16] C.C. Chen, J.H. Chen, C.G. Chao, “Post-treatment Method of Producing Ordered Array of Anodic Aluminum Oxide Using General Purity Commercial (99.7%) Aluminum, Jpn. J. Appl. Phys. 44, (2005) 1529-1533.
[17] S.H. Chen, C.C. Chen, Z.P. Luo, C.G. Chao, “Fabrication and characterization of eutectic bismuth-tin (Bi-Sn) nanowires”, Materials Letter 63, (2009) 1665-1668.
[18] S.H. Chen, C.C. Chon C.G. Chao, “Novel Morphology and Solidification Behavior of Eutectic Bismuth-Tin (Bi-Sn) Nanowires”, J. Alloys Compd. 481, (2009) 270-273.
[19] W.C. Say, C.C. Chen, “Formation of Tin Whiskers and Spheres on Anodic Aluminum Oxide Template”, Jpn. J. Appl. Phys. 46, (2007) 7577-7580.
[20] C.Y. Chen, C.W. Hun, S.F. Chen, C.C. Chen, J.S. Lin, S.S. Johnson, N. Noel, N. Juliely, Z.P. Luo, “Fabrication of Nanoscale Cesium Iodide (CsI) Scintillators for High-Energy Radiation Detection”, Review in Nanoscience and Nanotechnology, 4 (2015) 26-49.
[21] C.G. Kuo, C.C. Chen, “Technique for Self-assembly of Tin Nano-particles on Anodic Aluminum Oxide (AAO) Templates”, Materials Transactions 50, (2009) 1102-1104.
[22] J.S. Lin, S.H. Chen, K.J. Huang, C.W. Hun, C.C. Chen, Challenges to Fabricate Large Size-Controllable Submicron Structured Anodic-Aluminum-Oxide Film”, Atlas Journal of Materials Science, 2 (2015) 65-72.
[23] C.Y. Chen, S.H. Chen, C.C. Chen, J.S. Lin, Using Positive Pressure to produce a Sub-micron Single-Crystal Column of Cesium Iodide (CsI) for Scintillator Formation, Materials Letters, 148 (2015) 138-141.