Search results for: Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18073

Search results for: Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

16153 Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators

Authors: Liu Xuedong, Liu Hanpeng, Zhou Ling

Abstract:

Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.

Keywords: Cross-corrugated surface, Primary surface, Numerical simulation, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
16152 Analyzing Methods of the Relation between Concepts based on a Concept Hierarchy

Authors: Ke Lu, Tetsuya Furukawa

Abstract:

Data objects are usually organized hierarchically, and the relations between them are analyzed based on a corresponding concept hierarchy. The relation between data objects, for example how similar they are, are usually analyzed based on the conceptual distance in the hierarchy. If a node is an ancestor of another node, it is enough to analyze how close they are by calculating the distance vertically. However, if there is not such relation between two nodes, the vertical distance cannot express their relation explicitly. This paper tries to fill this gap by improving the analysis method for data objects based on hierarchy. The contributions of this paper include: (1) proposing an improved method to evaluate the vertical distance between concepts; (2) defining the concept horizontal distance and a method to calculate the horizontal distance; and (3) discussing the methods to confine a range by the horizontal distance and the vertical distance, and evaluating the relation between concepts.

Keywords: Concept Hierarchy, Horizontal Distance, Relation Analysis, Vertical Distance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
16151 Stiffness Modeling of 3-PRS Mechanism

Authors: Xiaohui Han, Yuhan Wang, Jing Shi

Abstract:

This paper proposed a stiffness analysis method for a 3-PRS mechanism for welding thick aluminum plate using FSW technology. In the molding process, elastic deformation of lead-screws and links are taken into account. This method is based on the virtual work principle. Through a survey of the commonly used stiffness performance indices, the minimum and maximum eigenvalues of the stiffness matrix are used to evaluate the stiffness of the 3-PRS mechanism. Furthermore, A FEA model has been constructed to verify the method. Finally, we redefined the workspace using the stiffness analysis method.

Keywords: 3-PRS, parallel mechanism, stiffness analysis, workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
16150 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics etc. This paper indicates the need of developing electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of microcantilever, equivalent electrical circuit is drawn and using force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to powerful set of intellectual tools that have been developed for understanding electrical circuits Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantlevers are in agreement with each other.

Keywords: Electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
16149 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

Authors: Xin Luo, Jin Huang, Pan Cheng

Abstract:

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.

Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
16148 A Block World Problem Based Sudoku Solver

Authors: Luciana Abednego, Cecilia Nugraheni

Abstract:

There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.

Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
16147 A Purpose Based Usage Access Control Model

Authors: Lili Sun, Hua Wang

Abstract:

As privacy becomes a major concern for consumers and enterprises, many research have been focused on the privacy protecting technology in recent years. In this paper, we present a comprehensive approach for usage access control based on the notion purpose. In our model, purpose information associated with a given data element specifies the intended use of the subjects and objects in the usage access control model. A key feature of our model is that it allows when an access is required, the access purpose is checked against the intended purposes for the data item. We propose an approach to represent purpose information to support access control based on purpose information. Our proposed solution relies on usage access control (UAC) models as well as the components which based on the notions of the purpose information used in subjects and objects. Finally, comparisons with related works are analyzed.

Keywords: Purpose, privacy, access control, authorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
16146 Automatic Image Alignment and Stitching of Medical Images with Seam Blending

Authors: Abhinav Kumar, Raja Sekhar Bandaru, B Madhusudan Rao, Saket Kulkarni, Nilesh Ghatpande

Abstract:

This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together using the new triangular averaging based blending algorithm. The quality of the resultant image is tested for photometric inconsistencies and geometric misalignments. This method cannot correct rotational, scale and perspective artifacts.

Keywords: Histogram Matching, Image Alignment, ImageStitching, Medical Imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3752
16145 Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

Authors: Ming-Hui Lee, Tsung-Chien Chen, Yuh-Shiou Tai

Abstract:

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Keywords: Fuzzy Input Estimator, Kalman Filter, RecursiveLeast Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
16144 Efficiency of Post-Tensioning Method for Seismic Retrofitting of Pre-Cast Cylindrical Concrete Reservoirs

Authors: M.E.Karbaschi, R.Goudarzizadeh, N.Hedayat

Abstract:

Cylindrical concrete reservoirs are appropriate choice for storing liquids as water, oil and etc. By using of the pre-cast concrete reservoirs instead of the in-situ constructed reservoirs, the speed and precision of the construction would considerably increase. In this construction method, wall and roof panels would make in factory with high quality materials and precise controlling. Then, pre-cast wall and roof panels would carry out to the construction site for assembling. This method has a few faults such as: the existing weeks in connection of wall panels together and wall panels to foundation. Therefore, these have to be resisted under applied loads such as seismic load. One of the innovative methods which was successfully applied for seismic retrofitting of numerous pre-cast cylindrical water reservoirs in New Zealand, using of the high tensile cables around the reservoirs and post-tensioning them. In this paper, analytical modeling of wall and roof panels and post-tensioned cables are carried out with finite element method and the effect of height to diameter ratio, post-tensioning force value, liquid level in reservoir, installing position of tendons on seismic response of reservoirs are investigated.

Keywords: Seismic Retrofit, Pre-Cast, Concrete Reservoir, Post-Tensioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
16143 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
16142 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
16141 Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine

Authors: A. A. Pawar, R. R. Kulkarni

Abstract:

For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.

Keywords: Biodiesel fueled engine, equivalence ratio, Compression ignition engine, exhausts gas temperature, NOX formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
16140 Release of Elements in Bottom Ash and Fly Ash from Incineration of Peat- and Wood-Residues using a Sequential Extraction Procedure

Authors: Risto Poykio, Kati Manskinen, Olli Dahl, Mikko Mäkelä, Hannu Nurmesniemi

Abstract:

When the results of the total element concentrations using USEPA method 3051A are compared to the sequential extraction analyses (i.e. the sum of fractions BCR1, BCR2 and BRC3), it can be calculated that the recovery values of elements varied between 56.8-% and 69.4-% in the bottom ash, and between 11.3-% and 70.9-% in the fly ash. This indicates that most of the elements in the ashes do not occur as readily soluble forms.

Keywords: Ash, BCR, leaching, solubility, waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
16139 Simulation of the Finite Difference Time Domain in Two Dimension

Authors: Akram G., Jasmy Y.

Abstract:

The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.

Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5610
16138 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern

Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc

Abstract:

The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.

Keywords: Phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
16137 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence

Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei

Abstract:

With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.

Keywords: Reasoning, Bayesian networks, cyber-attack attribution, kill chain, threat intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
16136 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
16135 The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads

Authors: Mahmoud Miri, Soleiman Maramaee

Abstract:

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Keywords: Seismic analysis, torsion, asymmetric, irregular building, stiffness source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
16134 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method

Authors: Liang Zhao, Jili Zhang, Kai Li

Abstract:

A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.

Keywords: Fan coil unit, duty ratio, fuzzy controller, experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
16133 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method

Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela

Abstract:

This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.

Keywords: Noise estimation, Non-stationary noise, Speechenhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
16132 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: Numerical simulation, pultruded profile, volume fraction, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
16131 Ductility, Rμ, and Overstrength Factors for V Braced Reinforced Concrete Buildings

Authors: Birendra Kumar Bohara

Abstract:

Steel bracings are used to improve the seismic behaviors of the structures. In this study, 8, 12 and 16 story reinforced concrete (RC) buildings with steel bracings are used in three base shear contributions (25%, 50% and 75%) in the columns. With the help of pushover analysis and capacity curves, the overstrength factors, ductility factors and ductility reduction factors are investigated for braced RC buildings. It is observed that when the base shear contribution in the columns increases the ductility reduction factor also increases. The results show that when the time period of the structures increases, the ductility reduction factors of the structures decrease.

Keywords: Steel bracing, overstrength factor, ductility, ductility reduction factors, base shear contributions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
16130 Tuning a Fractional Order PID Controller with Lead Compensator in Frequency Domain

Authors: Tahmine. V. Moghaddam, N. Bigdeli, K. Afshar

Abstract:

To achieve the desired specifications of gain and phase margins for plants with time-delay that stabilized with FO-PID controller a lead compensator is designed. At first the range of controlled system stability based on stability boundary criteria is determined. Using stability boundary locus method in frequency domain the fractional order controller parameters are tuned and then with drawing bode diagram in frequency domain accessing to desired gain and phase margin are shown. Numerical examples are given to illustrate the shapes of the stabilizing region and to show the design procedure.

Keywords: Fractional controller, Lead compensator, Stabilityregions, Stability boundary locus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
16129 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract:

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
16128 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: Airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
16127 Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium

Authors: Mohsen Keyvanfard

Abstract:

A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samples

Keywords: Ruthenium ;Inhibitory; Rhodamine B; bromate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
16126 A Monte Carlo Method to Data Stream Analysis

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham

Abstract:

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
16125 Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings

Authors: Yi-Hua Chen, Hsiang-Wen Tang, I-Ling Chang, Lien-Wen Chen

Abstract:

The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings.

Keywords: Defect mode, Archimedean tilings, phononic crystals, whispering- gallery modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
16124 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole

Authors: Hasan Keshavarzian, Tayebeh Nesari

Abstract:

Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.

Keywords: Rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105