Search results for: material nonlinearity
153 Multipath Routing Sensor Network for Finding Crack in Metallic Structure Using Fuzzy Logic
Authors: Dulal Acharjee, Punyaban Patel
Abstract:
For collecting data from all sensor nodes, some changes in Dynamic Source Routing (DSR) protocol is proposed. At each hop level, route-ranking technique is used for distributing packets to different selected routes dynamically. For calculating rank of a route, different parameters like: delay, residual energy and probability of packet loss are used. A hybrid topology of DMPR(Disjoint Multi Path Routing) and MMPR(Meshed Multi Path Routing) is formed, where braided topology is used in different faulty zones of network. For reducing energy consumption, variant transmission ranges is used instead of fixed transmission range. For reducing number of packet drop, a fuzzy logic inference scheme is used to insert different types of delays dynamically. A rule based system infers membership function strength which is used to calculate the final delay amount to be inserted into each of the node at different clusters. In braided path, a proposed 'Dual Line ACK Link'scheme is proposed for sending ACK signal from a damaged node or link to a parent node to ensure that any error in link or any node-failure message may not be lost anyway. This paper tries to design the theoretical aspects of a model which may be applied for collecting data from any large hanging iron structure with the help of wireless sensor network. But analyzing these data is the subject of material science and civil structural construction technology, that part is out of scope of this paper.Keywords: Metallic corrosion, Multi Path Routing, DisjointMPR, Meshed MPR, braided path, dual line ACK link, route rankingand Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520152 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.
Keywords: Biocomposite, epoxy resin, mussel shell, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933151 Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device
Authors: Smaali Assia, Outemzabet Ratiba, Media El Mahdi, Kadi Mohamed
Abstract:
Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.Keywords: Doping, oxide, reflectance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915150 Potential of Henna Leaves as Dye and Its Fastness Properties on Fabric
Authors: Nkem Angela Udeani
Abstract:
Despite the wide spread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for beautification of the body. Centuries before the discovery of synthetic dyes, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plants- leaves, roots, barks or flowers are the most explored and exploited in which henna (Lawsonia innermis L.) is one of those plants. Experiment has also shown that henna is used in body painting in conjunction with an alkaline (Ammonium Sulphate) as a fixing agent. This of course gives a clue that if colour derived from henna is properly investigated, it may not only be used for body decoration but possibly, may have affinity to fiber substrate. This paper investigates the dyeing potentials – dye ability and fastness qualities of henna dye extracts on cotton and linen fibers using mordants like ammonium sulphate and other alkalis (hydrosulphate and caustic soda, potash, common salt, potassium alum). Hot and cold water and ethanol solvent were used in the extraction of the dye to investigate the most effective method, dye ability, and fastness qualities of these extracts under room temperature. The results of the experiment show that cotton have a high rate of dye intake than other fiber. On a similar note, the colours obtained depend most on the solvent used. In conclusion, hot water extraction appears more effective. While the colours obtained from ethanol and both cold hot methods of extraction range from light to dark yellow, light green to army green and to some extent shades of brown hues.Keywords: Dye, fabrics, henna leaves, potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4111149 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing
Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang
Abstract:
Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.Keywords: Equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427148 Exploration of Influential Factors on First Year Architecture Students’ Productivity
Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani
Abstract:
The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.
Keywords: Architecture education, basic design studio, educational method, forms creation skill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623147 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling
Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang
Abstract:
In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.
Keywords: Glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801146 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle
Authors: Khaled M. Khader, Mamdouh I. Elimy
Abstract:
Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.
Keywords: Composite material, crank-rocker mechanism, transmission angle, design techniques, power saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068145 Appraisal of Trace Elements in Scalp Hair of School Children in Kandal Province, Cambodia
Authors: A. Yavar, S. Sarmani, K. S. Khoo
Abstract:
The analysis of trace elements in human hair provides crucial insights into an individual's nutritional status and environmental exposure. This research aimed to examine the levels of toxic and essential elements in the scalp hair of school children aged 12-17 from three villages (Anglong Romiot (AR), Svay Romiot (SR), and Kampong Kong (KK)) in Cambodia's Kandal province, a region where residents are especially vulnerable to toxic elements, notably arsenic (As), due to their dietary habits, lifestyle, and environmental conditions. The scalp hair samples were analyzed using the k0-Instrumental Neutron Activation method (k0-INAA), with a six-hour irradiation period in the Malaysian Nuclear Agency (MNA) research reactor followed by High Purity Germanium (HPGe) detector use to identify the gamma peaks of radionuclides. The analysis identified 31 elements in the human hair from the study area, including As, Au, Br, Ca, Ce, Co, Dy, Eu-152m, Hg-197, Hg-203, Ho, Ir, K, La, Lu, Mn, Na, Pa, Pt-195m, Pt-197, Sb, Sc-46, Sc-47, Sm, Sn-117m, W-181, W-187, Yb-169, Yb-175, Zn, and Zn-69m. The accuracy of the method was verified through the analysis of ERM-DB001-human hair as a Certified Reference Material (CRM), with the results demonstrating consistency with the certified values. Given the prevalent arsenic pollution in the research area, the study also examined the relationship between the concentration of As and other elements using Pearson's correlation test. The outcomes offer a comprehensive resource for future investigations into toxic and essential element presence in the region. In the main body of the paper, a more extensive discussion on the implications of arsenic pollution and the correlations observed is provided to enhance understanding and inform future research directions.
Keywords: Human scalp hair, toxic and essential elements, Kandal Province, Cambodia, k0-Instrumental Neutron Activation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267144 Physicochemical Properties of Microemulsions and their uses in Enhanced Oil Recovery
Authors: T. Kumar, Achinta Bera, Ajay Mandal
Abstract:
Use of microemulsion in enhanced oil recovery has become more attractive in recent years because of its high level of extraction efficiency. Experimental investigations have been made on characterization of microemulsions of oil-brinesurfactant/ cosurfactant system for its use in enhanced oil recovery (EOR). Sodium dodecyl sulfate, propan-1-ol and heptane were selected as surfactant, cosurfactant and oil respectively for preparation of microemulsion. The effects of salinity on the relative phase volumes and solubilization parameters have also been studied. As salinity changes from low to high value, phase transition takes place from Winsor I to Winsor II via Winsor III. Suitable microemulsion composition has been selected based on its stability and ability to reduce interfacial tension. A series of flooding experiments have been performed using the selected microemulsion. The flooding experiments were performed in a core flooding apparatus using uniform sand pack. The core holder was tightly packed with uniform sands (60-100 mesh) and saturated with brines of different salinities. It was flooded with the brine at 25 psig and the absolute permeability was calculated from the flow rate of the through sand pack. The sand pack was then flooded with the crude oil at 800 psig to irreducible water saturation. The initial water saturation was determined on the basis of mass balance. Waterflooding was conducted by placing the coreholder horizontally at a constant injection pressure at 200 pisg. After water flooding, when water-cut reached above 95%, around 0.5 pore volume (PV) of the above microemulsion slug was injected followed by chasing water. The experiments were repeated using different composition of microemulsion slug. The additional recoveries were calculated by material balance. Encouraging results with additional recovery more than 20% of original oil in place above the conventional water flooding have been observed.
Keywords: Microemulsion Flooding, Enhanced Oil Recovery, Phase Behavior, Optimal salinity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259143 Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation
Authors: Maged A. Mossallam
Abstract:
The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.Keywords: Concentrated Solar Energy, Orbital Control, Power Generation, Solar Thermal Engine, Space Vehicles Propulsion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075142 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough
Abstract:
The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.
Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257141 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing
Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda
Abstract:
Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.
Keywords: Cowpea, flexible packaging, maple pea, pH, water activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281140 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar
Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto
Abstract:
Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.
Keywords: Block caving, ground penetrating radar, reflectivity, RQD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672139 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls
Authors: Berna Istegun, Erkan Celebi
Abstract:
The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.
Keywords: Triplet shears tests, retrofitting, seismic fabric, perforated brickwork, expanded glass granular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295138 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes
Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi
Abstract:
One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.
Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005137 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method
Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez
Abstract:
Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.
Keywords: Ferrites, heating capability, hemolysis, nanoparticles, sol-gel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903136 Design and Development of Constant Stress Composite Cantilever Beam
Authors: Vinod B. Suryawanshi, Ajit D. Kelkar
Abstract:
Composite materials, due to their unique properties such as high strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. Traditionally, tapered laminated composite structures are manufactured using autoclave manufacturing process by ply drop off technique. Autoclave manufacturing though very powerful suffers from high capital investment and higher energy consumption. As per the current trends in composite manufacturing, Out of Autoclave (OoA) processes are looked as emerging technologies for manufacturing the structural composite components for aerospace and defense applications. However, there is a need for improvement among these processes to make them reliable and consistent. In this paper, feasibility of using out of autoclave process to manufacture the variable thickness cantilever beam is discussed. The minimum weight design for the composite beam is obtained using constant stress beam concept by tailoring the thickness of the beam. Ply drop off techniques was used to fabricate the variable thickness beam from glass/epoxy prepregs. Experiments were conducted to measure bending stresses along the span of the cantilever beam at different intervals by applying the concentrated load at the free end. Experimental results showed that the stresses in the bean at different intervals were constant. This proves the ability of OoA process to manufacture the constant stress beam. Finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results and thus validated design and manufacturing approach used.
Keywords: Beams, Composites, Constant Stress, Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4393135 Creation of Economic and Social Value by Social Entrepreneurship for Sustainable Development
Authors: Ahaskar Pandey, Gaurav Mukherjee, Sushil Kumar
Abstract:
The ever growing sentiment of environmentalism across the globe has made many people think on the green lines. But most of such ideas halt short of implementation because of the short term economic viability issues with the concept of going green. In this paper we have tried to amalgamate the green concept with social entrepreneurship for solving a variety of issues faced by the society today. In addition the paper also tries to ensure that the short term economic viability does not act as a deterrent. The paper comes up three sustainable models of social entrepreneurship which tackle a wide assortment of issues such as nutrition problem, land problems, pollution problems and employment problems. The models described fall under the following heads: - Spirulina cultivation: The model addresses nutrition, land and employment issues. It deals with cultivation of a blue green alga called Spirulina which can be used as a very nutritious food. Also, the implementation of this model would bring forth employment to the poor people of the area. - Biocomposites: The model comes up with various avenues in which biocomposites can be used in an economically sustainable manner. This model deals with the environmental concerns and addresses the depletion of natural resources. - Packaging material from empty fruit bunches (EFB) of oil palm: This one deals with air and land pollution. It is intended to be a substitute for packaging materials made from Styrofoam and plastics which are non-biodegradable. It takes care of the biodegradability and land pollution issues. It also reduces air pollution as the empty fruit bunches are not incinerated. All the three models are sustainable and do not deplete the natural resources any further. This paper explains each of the models in detail and deals with the operational/manufacturing procedures and cost analysis while also throwing light on the benefits derived and sustainability aspects.
Keywords: Biodegradable, Pollution, Social entrepreneurship, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823134 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading
Authors: Emre Kara, Şura Karakuzu, Ahmet F. Geylan, Metehan Demir, Kadir Koç, Halil Aykul
Abstract:
The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum alloy foam core, the skins made of three different types of fabrics and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances by aiming the analyses of their flexural performance in terms of absorbed energy, peak force values and collapse mechanisms. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force and absorbed energy values, collapse mechanisms and adhesion quality. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.
Keywords: Adhesive and adhesion, Aluminum foam, Bending, Collapse mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217133 Mapping the Quotidian Life of Practitioners of Various Religious Sects in Late Medieval Bengal: Portrayals on the Front Façades of the Baranagar Temple Cluster
Authors: I. Gupta, B. Karmakar
Abstract:
Bengal has a long history (8th century A.D. onwards) of decorating the wall of brick-built temples with curved terracotta plaques on a diverse range of subjects. These could be considered as one of the most significant visual archives to understand the various facets of the then contemporary societies. The temples under focus include Char-bangla temple complex (circa 1755 A.D.), Bhavanishvara temple (circa 1755 A.D.) and the Gangeshvara Shiva Jor-bangla temple (circa 1753 A.D.), located within a part of the river Bhagirathi basin in Baranagar, Murshidabad, West Bengal, India. Though, a diverse range of subjects have been intricately carved mainly on the front façades of the Baranagar temple cluster, the study specifically concentrates on depictions related to religious and non-religious acts performed by practitioners of various religious sects of late medieval Bengal with the intention to acquire knowledge about the various facets of their life. Apart from this, the paper also mapped the spatial location of these religious performers on the temples’ façades to examine if any systematic plan or arrangement had been employed for connoting a particular idea. Further, an attempt is made to provide a commentary on the attire worn by followers of various religious sects of late medieval Bengal. The primary materials for the study comprise the depictions which denote religious activities carved on the terracotta plaques. The secondary material has been collected from published and unpublished theses, journals and books. These data have been further supplemented with photographic documentation, some useful line-drawings and descriptions in table format to get a clear understanding of the concerned issues.
Keywords: Attire, scheme of allocation, terracotta temple, various religious sect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778132 Adverse Curing Conditions and Performance of Concrete: Bangladesh Perspective
Authors: T. Manzur
Abstract:
Concrete is the predominant construction material in Bangladesh. In large projects, stringent quality control procedures are usually followed under the supervision of experienced engineers and skilled labors. However, in the case of small projects and particularly at distant locations from major cities, proper quality control is often an issue. It has been found from experience that such quality related issues mainly arise from inappropriate proportioning of concrete mixes and improper curing conditions. In most cases external curing method is followed which requires supply of adequate quantity of water along with proper protection against evaporation. Often these conditions are found missing in the general construction sites and eventually lead to production of weaker concrete both in terms of strength and durability. In this study, an attempt has been made to investigate the performance of general concreting works of the country when subjected to several adverse curing conditions that are quite common in various small to medium construction sites. A total of six different types of adverse curing conditions were simulated in the laboratory and samples were kept under those conditions for several days. A set of samples was also submerged in normal curing condition having proper supply of curing water. Performance of concrete was evaluated in terms of compressive strength, tensile strength, chloride permeability and drying shrinkage. About 37% and 25% reduction in 28-day compressive and tensile strength were observed respectively, for samples subjected to most adverse curing condition as compared to the samples under normal curing conditions. Normal curing concrete exhibited moderate permeability (close to low permeability) whereas concrete under adverse curing conditions showed very high permeability values. Similar results were also obtained for shrinkage tests. This study, thus, will assist concerned engineers and supervisors to understand the importance of quality assurance during the curing period of concrete.
Keywords: Adverse, concrete, curing, compressive strength, drying shrinkage, permeability, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064131 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.
Keywords: Avatar-based, virtual environment, paired learning, individual differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781130 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: Food (Ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500129 Sustainable Energy Production with Closed-Loop Methods: Evaluating the Influence of Power Plant Age on Production Efficiency and Environmental Impact
Authors: Bujar Ismaili, Bahti Ismajli, Venhar Ismaili, Skender Ramadani
Abstract:
In Kosovo, the problem with the electricity supply is huge and it does not meet the demands of consumers. Older thermal power plants, which are regarded as big environmental polluters, produce most of the energy. Our experiment is based on the production of electricity using the closed method that does not affect environmental pollution by using waste as fuel that is considered to pollute the environment. The experiment was carried out in the village of Godanc, municipality of Shtime, Kosovo. In the experiment, a production line based on the production of electricity and central heating was designed at the same time. The results are the benefits of electricity as well as the release of temperature for heating with minimal expenses and with the release of 0% gases into the atmosphere. During this experiment, coal, plastic, waste from wood processing, and agricultural wastes were used as raw materials. The method utilized in the experiment allows for the release of gas through pipes and filters during the top-to-bottom combustion of the raw material in the boiler, followed by the method of gas filtration from waste wood processing (sawdust). During this process, the final product, gas, is obtained. This gas passes through the carburetor, enabling the combustion process to put the internal combustion machine and the generator into operation and produce electricity that does not release gases into the atmosphere. The results show that the system provides energy stability without environmental pollution from toxic substances and waste, as well as with low production costs. From the final results, it follows that, in the case of using coal fuel, we have benefited from more electricity and higher temperature release, followed by plastic waste, which also gave good results. The results obtained during these experiments prove that the current problems of lack of electricity and heating can be met at a lower cost and have a clean environment and waste management.
Keywords: Energy, heating, atmosphere, waste management, gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226128 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: Deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626127 Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process
Authors: S. A. Razavi Alavi, M. Torabi Angaji, Z. Gholami
Abstract:
In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9Keywords: Extrusion, Extruder, Granule, HDPE, Polymer, Twin-Screw extruder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4980126 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range
Authors: A. Mínguez-Martínez, J. de Vicente
Abstract:
Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. In this paper, we propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments, by applying minor changes.
Keywords: Industrial environment, confocal microscope, optical measuring instrument, traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411125 Fluid Differential Agitators
Authors: Saeed Asiri
Abstract:
This research is to design and implement a new kind of agitators called differential agitator. The Differential Agitator is an electro- mechanic set consists of two shafts. The first shaft is the bearing axis while the second shaft is the axis of the quartet upper bearing impellers group and the triple lower group which are called as agitating group. The agitating group is located inside a cylindrical container equipped especially to contain square directors for the liquid entrance and square directors called fixing group for the liquid exit. The fixing group is installed containing the agitating group inside any tank whether from upper or lower position. The agitating process occurs through the agitating group bearing causing a lower pressure over the upper group leading to withdrawing the liquid from the square directors of the liquid entering and consequently the liquid moves to the denser place under the quartet upper group. Then, the liquid moves to the so high pressure area under the agitating group causing the liquid to exit from the square directors in the bottom of the container. For improving efficiency, parametric study and shape optimization has been carried out. A numerical analysis, manufacturing and laboratory experiments were conducted to design and implement the differential agitator. Knowing the material prosperities and the loading conditions, the FEM using ANSYS11 was used to get the optimum design of the geometrical parameters of the differential agitator elements while the experimental test was performed to validate the advantages of the differential agitators to give a high agitation performance of lime in the water as an example. In addition, the experimental work has been done to express the internal container shape in the agitation efficiency. The study ended up with conclusions to maximize agitator performance and optimize the geometrical parameters to be used for manufacturing the differential agitatorKeywords: Differential Agitators, Parametric Optimization, Shape Optimization, Agitation, FEM, ANSYS11.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709124 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water
Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman
Abstract:
The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.
Keywords: Boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutants, pharmaceuticals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267