Search results for: deep neural networks
875 A Refined Application of QFD in SCM, A New Approach
Authors: Nooshin La'l Mohamadi
Abstract:
Due to the fact that in the new century customers tend to express globally increasing demands, networks of interconnected businesses have been established in societies and the management of such networks seems to be a major key through gaining competitive advantages. Supply chain management encompasses such managerial activities. Within a supply chain, a critical role is played by quality. QFD is a widely-utilized tool which serves the purpose of not only bringing quality to the ultimate provision of products or service packages required by the end customer or the retailer, but it can also initiate us into a satisfactory relationship with our initial customer; that is the wholesaler. However, the wholesalers- cooperation is considerably based on the capabilities that are heavily dependent on their locations and existing circumstances. Therefore, it is undeniable that for all companies each wholesaler possesses a specific importance ratio which can heavily influence the figures calculated in the House of Quality in QFD. Moreover, due to the competitiveness of the marketplace today, it-s been widely recognized that consumers- expression of demands has been highly volatile in periods of production. Apparently, such instability and proneness to change has been very tangibly noticed and taking it into account during the analysis of HOQ is widely influential and doubtlessly required. For a more reliable outcome in such matters, this article demonstrates the application viability of Analytic Network Process for considering the wholesalers- reputation and simultaneously introduces a mortality coefficient for the reliability and stability of the consumers- expressed demands in course of time. Following to this, the paper provides further elaboration on the relevant contributory factors and approaches through the calculation of such coefficients. In the end, the article concludes that an empirical application is needed to achieve broader validity.Keywords: Analytic Network Process, Quality Function Deployment, QFD flaws, Supply Chain Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427874 RRNS-Convolutional Concatenated Code for OFDM based Wireless Communication with Direct Analog-to-Residue Converter
Authors: Shahana T. K., Babita R. Jose, K. Poulose Jacob, Sreela Sasi
Abstract:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. Here, a direct conversion of analog signal to residue domain is done to reduce the conversion complexity using sigma-delta based parallel analog-to-residue converter. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.Keywords: Analog-to-residue converter, Concatenated codes, OFDM, Redundant Residue Number System, Sigma-delta modulator, Wireless communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944873 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks
Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta
Abstract:
This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.Keywords: GEO, ns2, Proactive TCP, SACK, Vegas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429872 Social Structure, Involuntary Relations, and Urban Poverty
Authors: Mahmood Niroobakhsh
Abstract:
This article deals with special structuralism approaches to explain a certain kind of social problem. Widespread presence of poverty is a reminder of deep-rooted unresolved problems of social relations. The expected role from an individual for the social system recognizes poverty derived from an interrelated social structure. By the time, enabled to act on his role in the course of social interaction, reintegration of the poor in society may take place. Poverty and housing type are reflections of the underlying social structure, primarily structure’s elements, systemic interrelations, and the overall strength or weakness of that structure. Poverty varies based on social structure in that the stronger structures are less likely to produce poverty.Keywords: Absolute poverty, relative poverty, social structure, urban poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685871 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988870 Tsunami Modelling using the Well-Balanced Scheme
Authors: Ahmad Izani M. Ismail, Md. Fazlul Karim, Mai Duc Thanh
Abstract:
A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation towards the Phuket coast in Southern Thailand during a hypothetical tsunami. The initial tsunami wave is generated in the deep ocean with the strength that of Indonesian tsunami of 2004.Keywords: Tsunami study, shallow water, conservation law, well-balanced scheme, topography. Subject classification: 86 A 05, 86 A 17.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748869 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230868 Survey of Communication Technologies for IoT Deployments in Developing Regions
Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen
Abstract:
The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.
Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394867 A Numerical Model for Studying Convectional Lifting Processes in the Tropics
Authors: Chantawan Noisri, Robert Harold Buchanan Exell
Abstract:
A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.Keywords: Numerical weather prediction, Finite differences, Convection lifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292866 The Challenges of Cloud Computing Adoption in Nigeria
Authors: Chapman Eze Nnadozie
Abstract:
Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.
Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798865 An Analysis of Blackouts for Electric Power Transmission Systems
Authors: Karamitsos Ioannis, Orfanidis Konstantinos
Abstract:
In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.Keywords: Blackout, Generator, Load, Power Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471864 Trispectral Analysis of Voiced Sounds Defective Audition and Tracheotomisian Cases
Abstract:
This paper presents the cepstral and trispectral analysis of a speech signal produced by normal men, men with defective audition (deaf, deep deaf) and others affected by tracheotomy, the trispectral analysis based on parametric methods (Autoregressive AR) using the fourth order cumulant. These analyses are used to detect and compare the pitches and the formants of corresponding voiced sounds (vowel \a\, \i\ and \u\). The first results appear promising, since- it seems after several experimentsthere is no deformation of the spectrum as one could have supposed it at the beginning, however these pathologies influenced the two characteristics: The defective audition influences to the formants contrary to the tracheotomy, which influences the fundamental frequency (pitch).Keywords: Cepstrum, cumulant, defective audition, tracheotomisy, trispectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409863 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix
Authors: Mehran Yazdi, Kazem Gheysari
Abstract:
In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.
Keywords: Biometrics, fingerprint classification, gray level cooccurrence matrix, regular texture representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967862 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.Keywords: Fuzzy time series, neural network, forecasting error, average error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591861 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modeling and Solving
Authors: Yasin Tadayonrad, Alassane Ballé Ndiaye
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading/unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is the loading/unloading capacity in each source/destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods (FMCG) industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on Python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.
Keywords: Supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528860 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling
Authors: M. Almutairi, S. Hadjiloucas
Abstract:
The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.
Keywords: Harmonics, passive filter, power factor, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191859 The Comparison of Data Replication in Distributed Systems
Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf
Abstract:
The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.Keywords: data replication, data hiding, consistency, dynamicdata replication strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635858 An Artificial Neural Network Model Based Study of Seismic Wave
Authors: Hemant Kumar, Nilendu Das
Abstract:
A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.
Keywords: ANN, Bayesian class, earthquakes, IMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702857 Software Architecture and Support for Patient Tracking Systems in Critical Scenarios
Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez
Abstract:
In this work a new platform for mobile-health systems is presented. System target application is providing decision support to rescue corps or military medical personnel in combat areas. Software architecture relies on a distributed client-server system that manages a wireless ad-hoc networks hierarchy in which several different types of client operate. Each client is characterized for different hardware and software requirements. Lower hierarchy levels rely in a network of completely custom devices that store clinical information and patient status and are designed to form an ad-hoc network operating in the 2.4 GHz ISM band and complying with the IEEE 802.15.4 standard (ZigBee). Medical personnel may interact with such devices, that are called MICs (Medical Information Carriers), by means of a PDA (Personal Digital Assistant) or a MDA (Medical Digital Assistant), and transmit the information stored in their local databases as well as issue a service request to the upper hierarchy levels by using IEEE 802.11 a/b/g standard (WiFi). The server acts as a repository that stores both medical evacuation forms and associated events (e.g., a teleconsulting request). All the actors participating in the diagnostic or evacuation process may access asynchronously to such repository and update its content or generate new events. The designed system pretends to optimise and improve information spreading and flow among all the system components with the aim of improving both diagnostic quality and evacuation process.Keywords: IEEE 802.15.4 (ZigBee), IEEE 802.11 a/b/g (WiFi), distributed client-server systems, embedded databases, issue trackers, ad-hoc networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039856 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks
Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha
Abstract:
This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.
Keywords: 5G, millimetre wavebands, super high-frequency band, SINR, signal-to-interference-plus-noise ratio, cost benefit analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724855 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans
Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke
Abstract:
Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.
Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673854 Threshold Submergence of Flow over PK Weirs
Authors: A. Javaheri, A. R. Kabiri-Samani
Abstract:
In this study an extensive experimental research is carried out to develop a better understanding of the effects of Piano Key (PK) weir geometry on weir flow threshold submergence. Experiments were conducted in a 12 m long, 0.4 m wide and 0.7 m deep rectangular glass wall flume. The main objectives were to investigate the effect of the PK weir geometries including the weir length, weir height, inlet-outlet key widths, upstream and downstream apex overhangs, and slopped floors on threshold submergence and study the hydraulic flow characteristics. From the experimental results, a practical formula is proposed to evaluate the flow threshold submergence over PK weirs.Keywords: Model experimentation, flow characteristics, Piano Key weir, threshold submergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183853 Predictive Model of Sensor Readings for a Mobile Robot
Authors: Krzysztof Fujarewicz
Abstract:
This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.
Keywords: Mobile robot, sensors, prediction, anticipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450852 Three Dimensional MEMS Supercapacitor Fabricated by DRIE on Silicon Substrate
Authors: Wei Sun, Ruilin Zheng, Xuyuan Chen
Abstract:
Micro power sources are required to be used in autonomous microelectromechanical system (MEMS). In this paper, we designed and fabricated a three dimensional (3D) MEMS supercapacitor, which is consisting of conformal silicon dioxide/titanium/polypyrrole (PPy) layers on silicon substrate. At first, ''through-structure'' was fabricated on the silicon substrate by high-aspect-ratio deep reactive ion etching (DRIE) method, which enlarges the available surface area significantly. Then the SiO2/Ti/PPy layers grew sequentially on the ³through-structure´. Finally, the supercapacitor was investigated by electrochemical methods.
Keywords: MEMS, Supercapacitor, DRIE, 3D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262851 Language and Retrieval Accuracy
Authors: Ahmed Abdelali, Jim Cowie, Hamdy S. Soliman
Abstract:
One of the major challenges in the Information Retrieval field is handling the massive amount of information available to Internet users. Existing ranking techniques and strategies that govern the retrieval process fall short of expected accuracy. Often relevant documents are buried deep in the list of documents returned by the search engine. In order to improve retrieval accuracy we examine the issue of language effect on the retrieval process. Then, we propose a solution for a more biased, user-centric relevance for retrieved data. The results demonstrate that using indices based on variations of the same language enhances the accuracy of search engines for individual users.Keywords: Information Search and Retrieval, LanguageVariants, Search Engine, Retrieval Accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477850 Wave Atom Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.
Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493849 Small and Silly? or Private Pitfall of Small and Medium-Sized Enterprises
Authors: A. Bencsik, V. Lőre, I. Marosi
Abstract:
Knowledge and these notions have become more and more important and we speak about a knowledge based society today. A lot of small and big companies have reacted upon these new challenges. But there is a deep abyss about knowledge conception and practice between the professional researchers and company - life. The question of this research was: How can small and mediumsized companies be equal to the demands of new economy? Questionnaires were used in this research and a special segment of the native knowledge based on economy was focused on. Researchers would have liked to know what the sources of success are and how they can be in connection with questions of knowledge acquisition, knowledge transfer, knowledge utilization in small and medium-sized companies. These companies know that they have to change their behaviour and thinking, but they are not on the suitable level that they can compete with bigger or multinational companies.Keywords: Knowledge, management, small and medium-sized companies, study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349848 A Mark-Up Approach to Add Value
Authors: Ivaylo I. Atanasov, Evelina N.Pencheva
Abstract:
This paper presents a mark-up approach to service creation in Next Generation Networks. The approach allows deriving added value from network functions exposed by Parlay/OSA (Open Service Access) interfaces. With OSA interfaces service logic scripts might be executed both on callrelated and call-unrelated events. To illustrate the approach XMLbased language constructions for data and method definitions, flow control, time measuring and supervision and database access are given and an example of OSA application is considered.
Keywords: Service creation, mark-up approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687847 On the Reliability of Low Voltage Network with Small Scale Distributed Generators
Authors: Rade M. Ciric, Nikola Lj.Rajakovic
Abstract:
Since the 80s huge efforts have been made to utilize renewable energy sources to generate electric power. This paper reports some aspects of integration of the distributed generators into the low voltage distribution networks. An assessment of impact of the distributed generators on the reliability indices of low voltage network is performed. Results obtained from case study using low voltage network, are presented and discussed.Keywords: low voltage network, distributed generation, reliability indices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799846 Cost Optimized CO2 Pipeline Transportation Grid: A Case Study from Italian Industries
Authors: P Bumb, U Desideri, F Quattrocchi, L Arcioni
Abstract:
This paper presents the feasibility study of CO2 sequestration from the sources to the sinks in the prospective of Italian Industries. CO2 produced at these sources captured, compressed to supercritical pressures, transported via pipelines and stored in underground geologic formations such as depleted oil and natural gas reservoirs, un-minable coal seams and deep saline aquifers. In this work, we present the optimized pipeline infrastructure for the CO2 with appropriate constraints to find lower cost system by the use of nonlinear optimization software LINGO 11.0. This study was conducted on CO2 transportation complex network of Italian Industries, to find minimum cost network for transporting the CO2 from sources to the sinks.
Keywords: CCS, CO2, ECBM, EU, NAP, LINGO, UNMIG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640