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 
Abstract—Electroencephalography (EEG) investigations of the 

brain computer interfaces are based on the electrical signals resulting 
from neural activities in the brain. In this paper, it is offered a method 
for classifying motor imagery EEG signals. The suggested method 
classifies EEG signals into two classes using the wave atom transform, 
and the transform coefficients are assessed, creating the feature set. 
Classification is done with SVM and k-NN algorithms with and 
without feature selection. For feature selection t-test approaches are 
utilized. A test of the approach is performed on the BCI competition 
III dataset IIIa. 
 

Keywords—Motor imagery, EEG, wave atom transform, SVM, k-
NN, t-test.  

I. INTRODUCTION 
EG signals originating from different brain locations are 
used in the development of brain computer interface (BCI) 

systems to generate command signals to control external 
devices, and EEG signals are classified according to the 
corresponding mental activity. Some of these classifications 
include processes in which organ movements such as right-left 
hand, right-left foot, which are defined as motor imageries, are 
investigated [1]. The main operations in research on signals are 
machine learning methods such as feature extraction and 
classification [2]-[4]. Much of the research on the classification 
of motor imagery EEG signals focuses on proposing new 
methods. 

Hsu et al. [5] propose using time-series prediction based on 
the adaptive neuro-fuzzy inference system (ANFIS). The 
ANFIS time-series prediction is combined with multiresolution 
fractal feature vectors (MFFVs) for feature extraction in motor 
imagery classification. Finally, classification is performed 
using a simple linear classifier known as linear discriminant 
analysis (LDA). Jin et al. [6] utilize Pearson's correlation 
coefficient to manually choose the channel with the most 
connected information, then extracted usable features using the 
regularized common spatial pattern (RCSP) and a support 
vector machine (SVM) as a classifier. In order to classify ERPs, 
Zhang et al. [7] use a spatial-temporal discriminant analysis 
(STDA) for brain-computer interface system. By cooperatively 
creating two projection matrices from geographical and 
temporal dimensions, the STDA approach tries to optimize 
discriminant information between target and nontarget classes. 
The proposed STDA approach is tested using dataset II from 
the BCI Competition III and data from their own investigations. 
Sun et al. [8] employ the following method: data is denoised 
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using the wavelet algorithm, and channels corresponding to the 
supplementary motor area are chosen. The data is then split into 
alpha and beta frequency components. In this stage, the welch 
power spectral density (WPSD) of various beats is determined 
and identified using SVM. Ma et al. [9] offer a processing 
method that reduces the impact of individual differences on 
classification. The discrete wavelet transform is used to 
compute the energy in each sub-band to find the best frequency 
band. For feature extraction and classification, a convolutional 
neural network based on power spectral density and a visual 
geometric group network is used. The method is demonstrated 
in a test of the BCI competition IV dataset IIa. Pattnaik et al. 
[10] used the discrete wavelet transform (DWT) to extract 
characteristics from EEG motor activity, and then used an 
artificial neural network (ANN) to categorize the signal to 
distinguish between left- and right-hand imagery movements. 
Two sets of feature vectors from beta rhythm are fed into the 
feed-forward neural network classifier. Three feature vectors, 
such as mean, standard deviation, and peak power, are 
discovered to be employed as inputs. 

The current research proposes a method for classifying motor 
imagery EEG signals using feature extraction based on multi-
scale analysis. The wave-atom transform is used to 
distinguished EEG data into sub bands, and feature vectors (F1 
and F2) are calculated across the transform coefficients to 
generate feature data. By lowering the size of the feature data 
obtained through the transformation, feature selection is 
conducted to boost the distinguishability of the features and 
improve classification performance. t-test algorithms are the 
favored strategies at this stage. SVM and k-NN algorithms are 
used to compare the classification of left- and right-hand motor 
imagery EEG data. 

II. MATERIAL AND METHOD 

A. Dataset 
The motor imagery EEG data provided BCI competition III 

[11] are used in this investigation. Competitions for BCI 
technology are held to ensure that various data analysis 
methodologies are evaluated and to promote BCI technology 
development. Throughout each tournament, different data sets 
are made available to everyone on the internet, and each data 
set is a record of brain signals prepared in experienced and 
leading BCI facilities. These records are made up of the labeled 
data partition (the "training set") and the unlabeled data 
partition (the "test set"). It includes data from three separate 
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volunteers on the right hand, left hand, foot, and tongue. There 
are also 60 channels and 60 trials in each class [12]. A 64-
channel EEG amplifier is used to record EEG signals, with the 
left mastoid serving as the reference and the right mastoid 
serving as the ground. The channel placements are shown in 
Figure 1. 

 

 
Fig. 1 Channel locations for BCI competition III Data Set IIIa [12] 

 
While creating the dataset, it is carried out experiment 

consists of several runs (at least 6) with 40 trials each. After the 
trial starts, the first two seconds are quiet; then, at t=2s, an 
acoustic stimulus indicates the start of the trial, and a cross "+" 
is displayed; then, from t=3s, an arrow to the left, right, up, or 
down is displayed for 1s; at the same time, the subject is asked 
to imagine a left hand, right hand, tongue, or foot movement, 
until the cross disappears at t=7s [12]. It is depicted in Figure 2.  

 

 
Fig. 2 Timeline for the paradigm [12] 

B. Wave Atom Transform 
Demanet presented the Wave Atom Transform [13] in 2007 

as a non-adaptive structure of compact backed wave packets. 
The transformation, which follows the parabolic scaling law, 
can be thought as a 2D wavelet packet variation. Wave atom 
transforms have two key characteristics. The first is the ability 
to adapt to arbitrary patterns in local directions. The capacity to 
sparsely express anisotropic patterns aligned with the axes is 
the second. Compared to other wave packets, wave atoms 
provide more precise frequency localization. 

Wave atoms are made up of the tensor products of 1D wave 
packets. Wave packets in one dimension can be represented as ߰௠,௡௝ ሺݔሻ for ݆,݉ ൒ 0. To create two-dimensional wave atoms 	߮ఓሺݔଵ, ߤ ଶሻ, ortho-normal basis functions is used with subscriptݔ ൌ ሺ݆,݉, ݊ሻ. The basis function is formed as 

 ߮ఓାሺݔଵ, ଶሻݔ ൌ ߰௠భ௝ ሺݔଵ െ 2ି௝݊ଵሻ߰௠మ௝ ሺݔଶ െ 2ି௝݊ଶሻ       (1) 
 

From the "Hilbert-transformed" wavelet packets, a dual 

orthonormal basis can be defined as 
 ߮ఓି ሺݔଵ, ଶሻݔ ൌ ௠భ௝߰ܪ ሺݔଵ െ 2ି௝݊ଵሻ߰ܪ௠మ௝ ሺݔଶ െ 2ି௝݊ଶሻ   (2) 
 
Finally, the ortho-normal basis is combined to generate the 

wave atom tight frame [13].  
 ߮ఓଵ ൌ ఝഋశାఝഋషଶ , ߮ఓଶ ൌ ఝഋశିఝഋషଶ                     (3) 

C. Proposed Method 
The motor imagery EEG dataset used in this study came from 

the BCI competition III dataset IIIa. The data set has four types 
of motor imagery signals (right hand (rh), left hand (lh), foot, 
and tongue) contributed by three people. This study, however, 
concentrated on classification of rh and lh movements. So, the 
first operation is to remove the EEG data from the data set, 
comprising the rh and lh motor imagery, and a new data set is 
created. This new data set containing 60 channel signal 
information was used to build another data set for three 
channels (C3, C4, and Cz), which is also preferred in the 
literature [14], [15], and method validation is carried out with 
this data. As the last step in dataset editing, the signal recordings 
from the C3, C4, and Cz electrodes are divided into two 
frequency bands, and the wave atom transform is applied to the 
data in each frequency range. The feature data is then created 
by calculating mean (mn), standard deviation (sd), entropy (en), 
median (md), maximum value (mx), kurtosis (kr), skewness 
(sk), and log-variance (lv) from the transformation coefficients. 
Classification is performed in three ways: 1) by submitting each 
generated feature vector (F1 and F2) to the classifiers separately 
for each frequency band, 2) by combining each generated 
feature vector (F1+F2), 3) by performing feature selection on 
the whole feature dataset using the t-test statistic and presenting 
the ranked features to the classifiers for ten ranges of values. 
SVM and k-NN (k-value starts with 3 and accepts 30 different 
values) algorithms are used in the classification process, 
respectively. The method's flow chart is depicted in Figure 3. 

 

 
Fig. 3 The block diagram for the method described in this paper 

2International Scholarly and Scientific Research & Innovation 16(1) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
1,

 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
36

9.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

Vol:16, No:1, 2022 

 

III. FINDINGS 
After the selected channel signals are transferred to the 

frequency bands using the wave atom transform, the mn, sd, en, 
md, mx, kr, sk and lv values are calculated over the transform 
coefficients, and the feature matrix is generated. The 
classification procedure is divided into three steps. Table I 
shows the classification results from the first two phases for 
each subject. The third phase classification results of the feature 
data categorized by the t-test method are given in Table II. In 
the table, there are classification results of ten feature clusters 
determined by t-test for each subject.  

 
TABLE I 

THE CLASSIFICATION RESULTS FROM THE FIRST TWO PHASES FOR EACH 
SUBJECT 

Feature set Subject SVM k-NN k 

F1 
Subject 1 56,67 54,44 9 
Subject 2 55 58,33 3 
Subject 3 61,67 58,33 27 

F2 
Subject 1 58,89 57,78 5 
Subject 2 63,33 66,67 17 
Subject 3 60 58,33 13 

F1+F2 
Subject 1 58,89 54,44 3 
Subject 2 66,67 68,33 9 
Subject 3 60 61,67 19 

 
Considering the three classification approaches, the best 

classification performance belongs to the SVM classifier with 
the feature data of subject three categorized by the t-test 
method. F1 feature data has lower classification accuracy when 
assessed individually. Classification success rates improve in 
both classifiers when F1 and F2 feature data are merged. In both 
classifiers, the best classification results are obtained from the 
data of subject 2 if an evaluation is conducted per-subject. 
When the t-test method is used, a similar issue occurs. The t-
test improves classification success rates for the three subjects, 
with data from subjects 2 yielding the best result. Figure 4 and 
5 depicts the changes in classification over subjects using the t-
test approach for SVM and k-NN classifiers, respectively. 

 

 

Fig. 4 The changes in classification over subjects using the t-test 
approach for SVM 

 

Fig. 5 The changes in classification over subjects using the t-test 
approach for k-NN 

 
TABLE II 

THE RESULTS OF THIRD PHASE CLASSIFICATION VIA THE FEATURE DATA 
CATEGORIZED BY THE T-TEST METHOD 

 SVM k-NN k 

Subject 1 

60 52,22 3 
63,33 52,22 3 
56,67 53,33 5 

60 61,11 17 
62,22 61,11 17 
61,11 62,22 11 

60 58,89 5 
60 58,89 5 
60 58,89 5 
60 58,89 5 

Subject 2 

58,33 65 15 
61,67 65 15 

70 68,33 23 
63,33 66,67 33 
63,33 66,67 33 
63,33 66,67 33 
63,33 66,67 33 
66,67 66,67 33 
61,67 66,67 33 
61,67 66,67 33 

Subject 3 

61,67 61,67 21 
60 53,33 3 

56,67 61,67 39 
56,67 61,67 39 
51,67 61,67 39 
51,67 61,67 39 
51,67 61,67 39 

50 56,67 11 
55 56,67 11 
55 56,67 11 

IV. CONCLUSION 
In this study, an alternative method is presented to investigate 

the success of wave atom transform in the classification of 
motor imagery EEG signals containing right- and left-hand 
movement information. The three-channel EEG data is split 
into two frequency bands, and the signals are decomposed using 
the wave atom transform. The feature data sets are formed by 
using the transformation coefficients and evaluating them with 
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two different classifiers. Overall, three classification phases are 
used, with the combination of t-test and SVM employing 
features from subject 2 yielding the best results.  
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