Search results for: POME based lipase.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11335

Search results for: POME based lipase.

9505 Optimization Based Tuning of Autopilot Gains for a Fixed Wing UAV

Authors: Mansoor Ahsan, Khalid Rafique, Farrukh Mazhar

Abstract:

Unmanned Aerial Vehicles (UAVs) have gained tremendous importance, in both Military and Civil, during first decade of this century. In a UAV, onboard computer (autopilot) autonomously controls the flight and navigation of the aircraft. Based on the aircraft role and flight envelope, basic to complex and sophisticated controllers are used to stabilize the aircraft flight parameters. These controllers constitute the autopilot system for UAVs. The autopilot systems, most commonly, provide lateral and longitudinal control through Proportional-Integral-Derivative (PID) controllers or Phase-lead or Lag Compensators. Various techniques are commonly used to ‘tune’ gains of these controllers. Some techniques used are, in-flight step-by-step tuning, software-in-loop or hardware-in-loop tuning methods. Subsequently, numerous in-flight tests are required to actually ‘fine-tune’ these gains. However, an optimization-based tuning of these PID controllers or compensators, as presented in this paper, can greatly minimize the requirement of in-flight ‘tuning’ and substantially reduce the risks and cost involved in flight-testing.

Keywords: Unmanned aerial vehicle (UAV), autopilot, autonomous controls, PID controler gains tuning, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657
9504 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
9503 The Vulnerability Analysis of Java Bytecode Based on Points-to Dataflow

Authors: Tang Hong, Zhang Lufeng, Chen Hua, Zhang Jianbo

Abstract:

Today many developers use the Java components collected from the Internet as external LIBs to design and develop their own software. However, some unknown security bugs may exist in these components, such as SQL injection bug may comes from the components which have no specific check for the input string by users. To check these bugs out is very difficult without source code. So a novel method to check the bugs in Java bytecode based on points-to dataflow analysis is in need, which is different to the common analysis techniques base on the vulnerability pattern check. It can be used as an assistant tool for security analysis of Java bytecode from unknown softwares which will be used as extern LIBs.

Keywords: Java bytecode, points-to dataflow, vulnerability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
9502 Multiple Input Multiple Output Detection Using Roulette Wheel Based Ant Colony Optimization Technique

Authors: B. Rebekka, B. Malarkodi

Abstract:

This paper describes an approach to detect the transmitted signals for 2×2 Multiple Input Multiple Output (MIMO) setup using roulette wheel based ant colony optimization technique. The results obtained are compared with classical zero forcing and least mean square techniques. The detection rates achieved using this technique are consistently larger than the one achieved using classical methods for 50 number of attempts with two different antennas transmitting the input stream from a user. This paves the path to use alternative techniques to improve the throughput achieved in advanced networks like Long Term Evolution (LTE) networks.

Keywords: MIMO, ant colony optimization, roulette wheel, soft computing, LTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
9501 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: False negative rate, intrusion detection system, machine learning methods, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
9500 Software Model for a Computer Based Training for an HVDC Control Desk Simulator

Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos

Abstract:

With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.

Keywords: Computer based training, Hypermedia, Software modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
9499 Transform-Domain Rate-Distortion Optimization Accelerator for H.264/AVC Video Encoding

Authors: Mohammed Golam Sarwer, Lai Man Po, Kai Guo, Q.M. Jonathan Wu

Abstract:

In H.264/AVC video encoding, rate-distortion optimization for mode selection plays a significant role to achieve outstanding performance in compression efficiency and video quality. However, this mode selection process also makes the encoding process extremely complex, especially in the computation of the ratedistortion cost function, which includes the computations of the sum of squared difference (SSD) between the original and reconstructed image blocks and context-based entropy coding of the block. In this paper, a transform-domain rate-distortion optimization accelerator based on fast SSD (FSSD) and VLC-based rate estimation algorithm is proposed. This algorithm could significantly simplify the hardware architecture for the rate-distortion cost computation with only ignorable performance degradation. An efficient hardware structure for implementing the proposed transform-domain rate-distortion optimization accelerator is also proposed. Simulation results demonstrated that the proposed algorithm reduces about 47% of total encoding time with negligible degradation of coding performance. The proposed method can be easily applied to many mobile video application areas such as a digital camera and a DMB (Digital Multimedia Broadcasting) phone.

Keywords: Context-adaptive variable length coding (CAVLC), H.264/AVC, rate-distortion optimization (RDO), sum of squareddifference (SSD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
9498 Adaptive Impedance Control for Unknown Non-Flat Environment

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.

Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
9497 Security Weaknesses of Dynamic ID-based Remote User Authentication Protocol

Authors: Hyoungseob Lee, Donghyun Choi, Yunho Lee, Dongho Won, Seungjoo Kim

Abstract:

Recently, with the appearance of smart cards, many user authentication protocols using smart card have been proposed to mitigate the vulnerabilities in user authentication process. In 2004, Das et al. proposed a ID-based user authentication protocol that is secure against ID-theft and replay attack using smart card. In 2009, Wang et al. showed that Das et al.-s protocol is not secure to randomly chosen password attack and impersonation attack, and proposed an improved protocol. Their protocol provided mutual authentication and efficient password management. In this paper, we analyze the security weaknesses and point out the vulnerabilities of Wang et al.-s protocol.

Keywords: Message Alteration Attack, Impersonation Attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
9496 Controlling the Angle of Attack of an Aircraft Using Genetic Algorithm Based Flight Controller

Authors: S. Swain, P. S Khuntia

Abstract:

In this paper, the unstable angle of attack of a FOXTROT aircraft is controlled by using Genetic Algorithm based flight controller and the result is compared with the conventional techniques like Tyreus-Luyben (TL), Ziegler-Nichols (ZN) and Interpolation Rule (IR) for tuning the PID controller. In addition, the performance indices like Mean Square Error (MSE), Integral Square Error (ISE), and Integral Absolute Time Error (IATE) etc. are improved by using Genetic Algorithm. It was established that the error by using GA is very less as compared to the conventional techniques thereby improving the performance indices of the dynamic system.

Keywords: Angle of Attack, Genetic Algorithm, Performance Indices, PID Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
9495 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterwards. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and at times better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: Channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
9494 A Case Study of Key-Dependent Permutations in Feistel Ciphers

Authors: Hani Almimi, Ola Osabi, Azman Samsudin

Abstract:

Many attempts have been made to strengthen Feistel based block ciphers. Among the successful proposals is the key- dependent S-box which was implemented in some of the high-profile ciphers. In this paper a key-dependent permutation box is proposed and implemented on DES as a case study. The new modified DES, MDES, was tested against Diehard Tests, avalanche test, and performance test. The results showed that in general MDES is more resistible to attacks than DES with negligible overhead. Therefore, it is believed that the proposed key-dependent permutation should be considered as a valuable primitive that can help strengthen the security of Substitution-Permutation Network which is a core design in many Feistel based block ciphers.

Keywords: Block Cipher, Feistel Structure, DES, Diehard Tests, Avalanche Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
9493 A New Algorithm for Enhanced Robustness of Copyright Mark

Authors: Harsh Vikram Singh, S. P. Singh, Anand Mohan

Abstract:

This paper discusses a new heavy tailed distribution based data hiding into discrete cosine transform (DCT) coefficients of image, which provides statistical security as well as robustness against steganalysis attacks. Unlike other data hiding algorithms, the proposed technique does not introduce much effect in the stegoimage-s DCT coefficient probability plots, thus making the presence of hidden data statistically undetectable. In addition the proposed method does not compromise on hiding capacity. When compared to the generic block DCT based data-hiding scheme, our method found more robust against a variety of image manipulating attacks such as filtering, blurring, JPEG compression etc.

Keywords: Information Security, Robust Steganography, Steganalysis, Pareto Probability Distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
9492 Near-Lossless Image Coding based on Orthogonal Polynomials

Authors: Krishnamoorthy R, Rajavijayalakshmi K, Punidha R

Abstract:

In this paper, a near lossless image coding scheme based on Orthogonal Polynomials Transform (OPT) has been presented. The polynomial operators and polynomials basis operators are obtained from set of orthogonal polynomials functions for the proposed transform coding. The image is partitioned into a number of distinct square blocks and the proposed transform coding is applied to each of these individually. After applying the proposed transform coding, the transformed coefficients are rearranged into a sub-band structure. The Embedded Zerotree (EZ) coding algorithm is then employed to quantize the coefficients. The proposed transform is implemented for various block sizes and the performance is compared with existing Discrete Cosine Transform (DCT) transform coding scheme.

Keywords: Near-lossless Coding, Orthogonal Polynomials Transform, Embedded Zerotree Coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
9491 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
9490 Chilean Wines Classification based only on Aroma Information

Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos

Abstract:

Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.

Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
9489 Digital Narrative as a Change Agent to Teach Reading to Media-Centric Students

Authors: Robert F. Kenny

Abstract:

Because today-s media centric students have adopted digital as their native form of communication, teachers are having increasingly difficult time motivating reluctant readers to read and write. Our research has shown these text-averse individuals can learn to understand the importance of reading and writing if the instruction is based on digital narratives. While these students are naturally attracted to story, they are better at consuming them than creating them. Therefore, any intervention that utilizes story as its basis needs to include instruction on the elements of story making. This paper presents a series of digitally-based tools to identify potential weaknesses of visually impaired visual learners and to help motivate these and other media-centric students to select and complete books that are assigned to them

Keywords: Cognitive tempo, digital narratives, digital Booktalk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
9488 Toward a Risk Assessment Model Based On Multi-Agent System for Cloud Consumer

Authors: Saadia Drissi, Siham Benhadou, Hicham Medromi

Abstract:

The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers.

Keywords: Cloud computing, risk assessment model, multi-agent system, AHP model, cloud consumer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
9487 Unipolar Anamorphosis and its use in Accessibility Analyses

Authors: T. Hudecek, Z. Zakova

Abstract:

The paper deals with cartographic visualisation of results of transport accessibility monitoring with the use of a semiautomated method of unipolar anamorphosis, developed by the authors in the GIS environment. The method is based on transformation of distance in the map to values of a geographical phenomenon. In the case of time accessibility it is based on transformation of isochrones converted into the form of concentric circles, taking into account selected topographic and thematic elements in the map. The method is most suitable for analyses of accessibility to or from a centre and for modelling its long-term context. The paper provides a detailed analysis of the procedures and functionality of the method, discussing the issues of coordinates, transformation, scale and visualisation. It also offers a discussion of possible problems and inaccuracies. A practical application of the method is illustrated by previous research results by the authors in the filed of accessibility in Czechia.

Keywords: accessibility, GIS, transformation, unipolar anamorphosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
9486 Semantic Modeling of Management Information: Enabling Automatic Reasoning on DMTF-CIM

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping can be used for automatic reasoning about the management information models, as a design aid, by means of new-generation CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, Ontology Languages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
9485 A Dynamically Reconfigurable Arithmetic Circuit for Complex Number and Double Precision Number

Authors: Haruo Shimada, Akinori Kanasugi

Abstract:

This paper proposes an architecture of dynamically reconfigurable arithmetic circuit. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operations. The proposed circuit is based on a complex number multiply-accumulation circuit which is used frequently in the field of digital signal processing. In addition, the proposed circuit performs real number double precision arithmetic operations. The data formats are single and double precision floating point number based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.

Keywords: arithmetic circuit, complex number, double precision, dynamic reconfiguration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
9484 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper commences its contribution by analyzing the various models and theories proposed in literature and amalgamate together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
9483 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
9482 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
9481 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
9480 Reconfigurable Autonomous Mini Robot Design using CPLD's

Authors: Aditya K, Dinesh P, Ramesh Bhakthavatchalu

Abstract:

This paper explains a project based learning method where autonomous mini-robots are developed for research, education and entertainment purposes. In case of remote systems wireless sensors are developed in critical areas, which would collect data at specific time intervals, send the data to the central wireless node based on certain preferred information would make decisions to turn on or off a switch or control unit. Such information transfers hardly sums up to a few bytes and hence low data rates would suffice for such implementations. As a robot is a multidisciplinary platform, the interfacing issues involved are discussed in this paper. The paper is mainly focused on power supply, grounding and decoupling issues.

Keywords: CPLD, power supply, decoupling, grounding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
9479 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
9478 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells

Authors: Jayesh M. Sonawane, Prakash C. Ghosh

Abstract:

Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.

Keywords: Microbial fuel cells, landfill leachate, air-breathing cathode, performance study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
9477 Human Absorbed Dose Estimation of a New IN-111 Imaging Agent Based on Rat Data

Authors: H. Yousefnia, S. Zolghadri

Abstract:

The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In- 1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In- DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In- DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, DOTMP, Internal Dosimetry, RADAR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
9476 A Strategy for a Robust Design of Cracked Stiffened Panels

Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano

Abstract:

This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.

Keywords: Residual strength, R-Curve, Gurson model, SDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541