Chilean Wines Classification based only on Aroma Information
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Chilean Wines Classification based only on Aroma Information

Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos

Abstract:

Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.

Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333132

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556

References:


[1] A.Yamazaki and T. B. Ludermir, "Classification of Vintages of Wine by an Artificial Nose with Neural Networks", Proceedings of Tercer Encuentro Nacional de Inteligencia Artificial, Fortaleza, Brasil, 2001.
[2] M.S. Santos, "Construction of an Artificial Nose using Neural Networks". Ph.D. Thesis, Centre of Informatics, Federal University of Pernambuco, Brazil, 2000.
[3] S. Haykin, Neural Networks: A Comprehensive Foundation. Macmillan College Publihing Company, 1994.
[4] J.P. Santos, J. Lozano, H. Vásquez, J.A. Agapito, M.A. Martín, J. González. "Clasificación e Identificación de Vinos Mediante un Sistema de Estado Sólido", Proceedings of the XXI Jornadas de Automática, Sevilla, 2000.
[5] M. Garc├¡a, M. Aleixandre, J. Gutiérrez and M.C. Horrillo, "Electronic nose for wine discrimination", Sensors and Actuators B: Chemical, vol. 113, pp. 911-916, Feb. 2006.
[6] C. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, News York, 2002.
[7] J. Ghosh, A. Nag, An Overview of Radial Basis Functions Networks. Physica-Verlag, 2000.
[8] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, 1996.
[9] H. Mhaskar, M. Michelli, "Approximation by Superposition of Sigmoidal and Radial Basis Functions", Advances in Applied Mathematics, vol 13, pp. 350-373, 1992
[10] J. Schurmann, Pattern Classification: A Unified View of Statistical and Neural Approaches, J. Wiley & Sons, 1996.
[11] K. Fukunaga and R. Hayes, "Estimation of Classifier Performance". IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 1087-1101, Oct. 1989.
[12] F. J. Cortijo Bon (2001). Selección y Extracción de Características. Available: http://www-etsi2.ugr.es/depar/ccia/rf/www/tema5_00- 01_www/tema5_00-01_www.html.
[13] Electronic Sensor Technology, 7100 Fast GC Analyzer: Operation Manual, Electronic Sensor Technology, Bussines Center Circle, 1999.
[14] N.H. Beltrán, M.A. Duarte-Mermoud, S.A. Salah, M.A. Bustos, A.I. Peña-Neira, E.A. Loyola and J.W. Jalocha. "Feature selection algorithms using Chilean wine chromatograms as examples". Journal of Food Engineering, vol. 67, No. 4, pp. 483-490, Apr. 2005.
[15] N.H. Beltrán, M.A. Duarte-Mermoud, M.A. Bustos, S.A. Salah, E.A. Loyola, A.I. Peña-Neira and J.W. Jalocha, "Feature extraction and classification of Chilean wines". Journal of Food Engineering, vol.75, No. 1, pp. 1-10, Jul. 2006.
[16] M.A. Bustos, M.A. Duarte-Mermoud, N.H. Beltrán, S.A. Salah, E.A. Loyola, A.I. Peña-Neira and J.W. Jalocha, "Classification of Chilean wines using a Bayesian approach" (In Spanish). Viticultura / Enología Profesional, No. 90, pp. 63-70, Jan.-Feb. 2004.