Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1070

Search results for: Wine classification.

1070 Chilean Wines Classification based only on Aroma Information

Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos

Abstract:

Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.

Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1069 Quantitative Ranking Evaluation of Wine Quality

Authors: A. Brunel, A. Kernevez, F. Leclere, J. Trenteseaux

Abstract:

Today, wine quality is only evaluated by wine experts with their own different personal tastes, even if they may agree on some common features. So producers do not have any unbiased way to independently assess the quality of their products. A tool is here proposed to evaluate wine quality by an objective ranking based upon the variables entering wine elaboration, and analysed through principal component analysis (PCA) method. Actual climatic data are compared by measuring the relative distance between each considered wine, out of which the general ranking is performed.

Keywords: Wine, grape, vine, weather conditions, rating, climate, principal component analysis, metric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1068 The Wine List Design by Upscale Restaurants

Authors: A. Oliveira-Brochado, R. Vinhas da Silva

Abstract:

This paper investigates the structure and content of the wine lists in upscale restaurants in Portugal (N=61). The respondents considered that a wine list should be easy to use and to modify, welldesigned, modern and varied. Respondents also stated that they perform on average 6 revisions to the wine list per year. The restaurant owner, the restaurant manager and the sommelier were the main persons in charge of the wine list design. One of the most important reasons for selecting wines across most restaurants was to ‘complement the menu’ and ‘pairing food with wine’. Restaurants also reported to be relatively independent from suppliers and magazine evaluations. Moreover, this work revealed that the restaurant wine list is considered by restaurateurs as a strategic tool to sell wine as a complement to the menu, to improve customer satisfaction and loyalty, to increase restaurant value and to enhance a successful positioning.

Keywords: Portugal, restaurants, wine list design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3503
1067 The World of Great Wines: The Douro Valley Experience

Authors: A. Oliveira-Brochado, R. Silva, C. Paulino

Abstract:

The aim of this paper is to use an experiential view of wine tourism to develop a battery of items that can potentially capture the overall Douro Valley experience from the tourist’s perspective. The Douro Valley, a UNESCO World Heritage region located in Portugal, was the target of this study. The research took a mixed approach using both qualitative and quantitative designs. Firstly, we combine the literature review on service quality scales with a content analysis of five in-depth interviews with winery managers and a focus group with wine tourists to identify the main dimensions of the overall tourism experience and to develop a battery of items for each dimension. Eight dimensions of the overall wine tourism experience came out, as follows: winery service and staff, winery facilities, winery service, wine product, wine region environment, wine region accessibilities, wine region´s offerings, and the wine region and winery reputation.

Keywords: Wine tourism, Douro region, survey, wineries, experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1066 Trends and Prospects for the Development of Georgian Wine Market

Authors: E. Kharaishvili, M. Chavleishvili, M. Natsvaladze

Abstract:

The article presents the trends in Georgian wine market development and evaluates the competitive advantages of Georgia to enter the wine market based on its customs, traditions and historical practices combined with modern technologies. In order to analyze the supply of wine, dynamics of vineyard land area and grape varieties are discussed, trends in wine production are presented, trends in export and import are evaluated, local wine market, its micro and macro environments are studied and analyzed based on the interviews with experts and analysis of initial recording materials. For strengthening its position on the international market, the level of competitiveness of Georgian wine is defined, which is evaluated by “ex-ante” and “ex-post” methods, as well as by four basic and two additional factors of the Porter’s diamond method; potential advantages and disadvantages of Georgian wine are revealed. Conclusions are made by identifying the factors that hinder the development of Georgian wine market. Based on the conclusions, relevant recommendations are developed.

Keywords: Georgian wine market, competitive advantage, bio wine, export-import, Porter's diamond model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3861
1065 Comparative Analysis of Total Phenolic Content in Sea Buckthorn Wine and Other Selected Fruit Wines

Authors: Bharti Negi, Gargi Dey

Abstract:

This is the first report from India on a beverage resulting from alcoholic fermentation of the juice of sea buckthorn (Hippophae rhamnoides L) using lab isolated yeast strain. The health promoting potential of the product was evaluated based on its total phenolic content. The most important finding was that under the present fermentation condition, the total phenolic content of the wine product was 689 mg GAE/L. Investigation of influence of bottle ageing on the sea buckthorn wine showed a slight decrease in the phenolic content (534 m mg GAE/L). This study also includes the comparative analysis of the phenolic content of wines from other selected fruit juices like grape, apple and black currant. KeywordsAlcoholic fermentation, Hippophae, Total phenolic content, Wine

Keywords: Alcoholic fermentation, Hippophae, Total phenolic content, Wine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2816
1064 Sustainability Management for Wine Production: A Case of Thailand

Authors: Muthatakul Metasit, Setthasakko Watchaneeporn

Abstract:

At present, increased concerns about global environmental problems have magnified the importance of sustainability management. To move towards sustainability, companies need to look at everything from a holistic perspective in order to understand the interconnections between economic growth and environmental and social sustainability. This paper aims to gain an understanding of key determinants that drive sustainability management and barriers that hinder its development. It employs semi-structured interviews with key informants, site observation and documentation. The informants are production, marketing and environmental managers of the leading wine producer, which aims to become an Asia-s leader in wine & wine based products. It is found that corporate image and top management leadership are the primary factors influencing the adoption of sustainability management. Lack of environmental knowledge and inefficient communication are identified as barriers.

Keywords: Environmental, knowledge; Sustainability management; Top management leadership; Wine industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1063 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
1062 Using Malolactic Fermentation with Acid- And Ethanol- Adapted Oenococcus Oeni Strain to Improve the Quality of Wine from Champs Bourcin Grape in Sapa - Lao Cai

Authors: Pham Thu Thuy, Nguyen Lan Huong, Chu Ky Son

Abstract:

Champs Bourcin black grape originated from Aquitaine, France and planted in Sapa, Lao cai provice, exhibited high total acidity (11.72 g/L). After 9 days of alcoholic fermentation at 25oC using Saccharomyces cerevisiae UP3OY5 strain, the ethanol concentration of wine was 11.5% v/v, however the sharp sour taste of wine has been found. The malolactic fermentation (MLF) was carried out by Oenococcus oeni ATCCBAA-1163 strain which had been preadapted to acid (pH 3-4) and ethanol (8-12%v/v) conditions. We obtained the highest vivability (83.2%) upon malolactic fermentation after 5 days at 22oC with early stationary phase O. oeni cells preadapted to pH 3.5 and 8% v/v ethanol in MRS medium. The malic acid content in wine was decreased from 5.82 g/L to 0.02 g/L after MLF (21 days at 22oC). The sensory quality of wine was significantly improved.

Keywords: Champs Bourcin grape, malolactic fermentation, pre-adaptation, Oenococcus oeni

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1061 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
1060 A New Weighted LDA Method in Comparison to Some Versions of LDA

Authors: Delaram Jarchi, Reza Boostani

Abstract:

Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.

Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
1059 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6191
1058 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

ABC classification is widely used by managers for inventory control. The classical ABC classification is based on Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to consider other important criteria. From these models, we will consider a specific model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score, based on a normalized average between a good and a bad optimized index, can affect the ABC-item classification. We will focus on items differently assigned to classes and then propose a classification compromise.

Keywords: ABC classification, Multi criteria inventory classification models, ZF-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1057 Potentials of Raphia hookeri Wine in Livelihood Sustenance among Rural and Urban Populations in Nigeria

Authors: A. A. Aiyeloja, A.T. Oladele, O. Tumulo

Abstract:

Raphia wine is an important forest product with cultural significance besides its use as medicine and food in southern Nigeria. This work aims to evaluate the profitability of Raphia wine production and marketing in Sapele Local Government Area, Nigeria. Four communities (Sapele, Ogiede, Okuoke and Elume) were randomly selected for data collection via questionnaires among producers and marketers. A total of 50 producers and 34 marketers were randomly selected for interview. Data was analyzed using descriptive statistics, profit margin, multiple regression and rate of returns on investment (RORI). Annual average profit was highest in Okuoke (Producers – N90, 000.00, Marketers - N70, 000.00) and least in Sapele (Producers N50, 000.00, Marketers – N45, 000.00). Calculated RORI for marketers were Elume (40.0%), Okuoke (25.0%), Ogiede (33.3%) and Sapele (50.0%). Regression results showed that location has significant effects (0.000, ρ ≤ 0.05) on profit margins. Male (58.8%) and female (41.2%) invest in Raphia wine marketing, while males (100.0%) dominate production. Results showed that Raphia wine has potentials to generate household income, enhance food security and improve quality of life in rural, semi-urban and urban communities. Improved marketing channels, storage facilities and credit facilities via cooperative groups are recommended for producers and marketers by concerned agencies.

Keywords: Raphia wine, Profit margin, RORI, Livelihood, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
1056 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-ariyaskul

Abstract:

The production of Dimethyl acetal, Isovaleradehyde and Pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of Acetaldehyde, Methanol, Ethyl Acetate, 1-propanol, water, iso-amyl alcohol and iso-butyl alcohol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: Dimethyl acetal, Pyridine, wine, Aspen Plus, Isovaleradehyde, polymeric precursors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1055 A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics

Authors: M. Ben Othmen, M. Sayadi, F. Fnaiech

Abstract:

Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness

Keywords: Classification, Wavelet, Co-occurrence, Euclidian Distance, Classifier, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
1054 Sensory Acceptability of Novel Sorrel/Roselle (Hibiscus sabdariffa L.)

Authors: Tamara Anderson, Neela Badrie

Abstract:

Consumers are demanding novel beverages that are healthier, convenient and have appealing consumer acceptance. The objectives of this study were to investigate the effects of adding grape polyphenols and the influence of presenting health claims on the sensory acceptability of wines. Fresh red sorrel calyces were fermented into wines. The total soluble solids of the pectinase-treated sorrel puree were from 4°Brix to 23.8°Brix. Polyphenol in the form of grape pomace extract was added to sorrel wines (w/v) in specified levels to give 0. 25. 50 and 75 ppm. A focus group comprising of 12 panelists was use to select the level of polyphenol to be added to sorrel wines for sensory preference The sensory attributed of the wines which were evaluated were colour, clarity, aroma, flavor, mouth-feel, sweetness, astringency and overall preference. The sorrel wine which was most preferred from focus group evaluation was presented for hedonic rating. In the first stage of hedonic testing, the sorrel wine was served chilled at 7°C for 24 h prior to sensory evaluation. Each panelist was provided with a questionnaire and was asked to rate the wines on colour, aroma, flavor, mouth-feel, sweetness, astringency and overall acceptability using a 9-point hedonic scale. In the second stage of hedonic testing, the panelist were instructed to read a health abstract on the health benefits of polyphenolic compounds and again to rate sorrel wine with added 25 ppm polyphenol. Paired t-test was used for the analysis of the influence of presenting health information on polyphenols on hedonic scoring of sorrel wines. Focus groups found that the addition of polyphenol addition had no significant effect on sensory color and aroma but affected clarity and flavor. A 25 ppm wine was liked moderately in overall acceptability. The presentation of information on the health benefit of polyphenols in sorrel wines to panelists had no significant influence on the sensory acceptance of wine. More than half of panelists would drink this wine now and then. This wine had color L 19.86±0.68, chroma 2.10±0.12, hue° 16.90 ±3.10 and alcohol content of 13.0%. The sorrel wine was liked moderately in overall acceptability with the added polyphenols.

Keywords: Sorrel wines, Roselle Hibiscus sabdariffa L, novel wine, polyphenols, health benefits, physicochemical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
1053 Classification of Attaks over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: Cloud computing, security, classification, risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1052 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
1051 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
1050 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
1049 Meta-Classification using SVM Classifiers for Text Documents

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.

Keywords: Meta-classification, Learning with Kernels, Support Vector Machine, and Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
1048 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
1047 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
1046 Binary Classification Tree with Tuned Observation-based Clustering

Authors: Maythapolnun Athimethphat, Boontarika Lerteerawong

Abstract:

There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms.

Keywords: multiclass classification, hierarchical classification, binary classification tree, clustering, observation-based clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1045 Quality Changes of Venison Marinated in Red Wine Marinade during Storage

Authors: Laima Silina, Ilze Gramatina, Lija Dukalska, Liga Skudra, Tatjana Rakcejeva, Dace Klava, Anita Blija

Abstract:

The objective of the present study was to determine quality parameters changes of red wine marinade marinated venison during storage. Beef as a control was analysed. Protein, fat, moisture and pH content dynamics as well microbiological quality was analyzed. The meat pieces were marinated in red wine marinade at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film Multibarrier 60 under modified atmosphere (CO2 40%+N2 60%) without and with oxygen absorber sachets, as a control packaging in air ambiance packed marinated venison and beef was used. Meat samples were analyzed after 0, 4, 7, 11 and 14 days of storage. During the storage of meat, protein and moisture content significantly (p<0.05) decreased, pH and colony forming units significantly (p<0.05) increased, fat content does not change in all treatments irrespective of the packaging method.

Keywords: Marinating, modified atmosphere, quality, venison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1044 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
1043 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: Lean approach, lean models, classification, dimensions, holistic view.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
1042 Obstacle Classification Method Based On 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

We propose obstacle classification method based on 2D LIDAR Database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width and intensity data; the first classification was processed by the width data; the second classification was processed by the intensity data; classification was processed by comparing to database; result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.

Keywords: Obstacle, Classification, LIDAR, Segmentation, Width, Intensity, Database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
1041 An Efficient Obstacle Detection Algorithm Using Colour and Texture

Authors: Chau Nguyen Viet, Ian Marshall

Abstract:

This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.

Keywords: Colour, texture, classification, obstacle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519