Search results for: input current wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4148

Search results for: input current wave

2348 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
2347 Program Camouflage: A Systematic Instruction Hiding Method for Protecting Secrets

Authors: Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, Ken-ichi Matsumoto

Abstract:

This paper proposes an easy-to-use instruction hiding method to protect software from malicious reverse engineering attacks. Given a source program (original) to be protected, the proposed method (1) takes its modified version (fake) as an input, (2) differences in assembly code instructions between original and fake are analyzed, and, (3) self-modification routines are introduced so that fake instructions become correct (i.e., original instructions) before they are executed and that they go back to fake ones after they are executed. The proposed method can add a certain amount of security to a program since the fake instructions in the resultant program confuse attackers and it requires significant effort to discover and remove all the fake instructions and self-modification routines. Also, this method is easy to use (with little effort) because all a user (who uses the proposed method) has to do is to prepare a fake source code by modifying the original source code.

Keywords: Copyright protection, program encryption, program obfuscation, self-modification, software protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
2346 Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel

Authors: Wei Zhang, Su-Yan Tang, Yi-Fan Zhu, Wei-Ping Wang

Abstract:

Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.

Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
2345 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker

Authors: Md Abid Khan

Abstract:

A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgears incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance and it can be higher than the available personnel protective equipment (PPE) ratings. A fault on the line side of the 480 Volt breaker is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, do not require human interventions and eliminates exposure to human errors. It is installed at the maintenance activity location and its operations can be locally monitored by craftsmen during maintenance activities.

Keywords: Arc flash, mitigation, maintenance switch, energy level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
2344 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, econometric models, Nile Delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
2343 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis

Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar

Abstract:

In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.

Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
2342 Using RASCAL and ALOHA Codes to Establish an Analysis Methodology for Hydrogen Fluoride Evaluation

Authors: J. R. Wang, Y. Chiang, W. S. Hsu, H. C. Chen, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih

Abstract:

In this study, the RASCAL and ALOHA codes are used to establish an analysis methodology for hydrogen fluoride (HF) evaluation. There are three main steps in this study. First, the UF6 data were collected. Second, one postulated case was analyzed by using the RASCAL and UF6 data. This postulated case assumes that fire occurring and UF6 is releasing from a building. Third, the results of RASCAL for HF mass were as the input data of ALOHA. Two postulated cases of HF were analyzed by using ALOHA code and the results of RASCAL. These postulated cases assume fire occurring and HF is releasing with no raining (Case 1) or raining (Case 2) condition. According to the analysis results of ALOHA, the HF concentration of Case 2 is smaller than Case 1. The results can be a reference for the preparing of emergency plans for the release of HF.

Keywords: RASCAL, ALOHA, UF6, hydrogen fluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
2341 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
2340 Robotics System Design for Assembly and Disassembly Process

Authors: Nina Danišová, Roman Ružarovský, Karol Velíšek

Abstract:

In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.

Keywords: Cartesian robot, design methodology, assembly, disassembly, pneumatic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2966
2339 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Authors: K.M. Faraoun, A. Boukelif

Abstract:

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Keywords: Genetic programming, patterns classification, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
2338 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of across section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: Robot hand, Underactuated mechanism, Cross section deformation spring, Prosthetic hand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
2337 A Survey of Business Component Identification Methods and Related Techniques

Authors: Zhongjie Wang, Xiaofei Xu, Dechen Zhan

Abstract:

With deep development of software reuse, componentrelated technologies have been widely applied in the development of large-scale complex applications. Component identification (CI) is one of the primary research problems in software reuse, by analyzing domain business models to get a set of business components with high reuse value and good reuse performance to support effective reuse. Based on the concept and classification of CI, its technical stack is briefly discussed from four views, i.e., form of input business models, identification goals, identification strategies, and identification process. Then various CI methods presented in literatures are classified into four types, i.e., domain analysis based methods, cohesion-coupling based clustering methods, CRUD matrix based methods, and other methods, with the comparisons between these methods for their advantages and disadvantages. Additionally, some insufficiencies of study on CI are discussed, and the causes are explained subsequently. Finally, it is concluded with some significantly promising tendency about research on this problem.

Keywords: Business component, component granularity, component identification, reuse performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
2336 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
2335 Revised Technology Acceptance Model Framework for M-Commerce Adoption

Authors: Manish Gupta

Abstract:

Following the E-Commerce era, M-Commerce is the next big phase in the technology involvement and advancement. This paper intends to explore how Indian consumers are influenced to adopt the M-commerce. In this paper, the revised Technology Acceptance Model (TAM) has been presented on the basis of the most dominant factors that affect the adoption of M-Commerce in Indian scenario. Furthermore, an analytical questionnaire approach was carried out to collect data from Indian consumers. These collected data were further used for the validation of the presented model. Findings indicate that customization, convenience, instant connectivity, compatibility, security, download speed in M-Commerce affect the adoption behavior. Furthermore, the findings suggest that perceived usefulness and attitude towards M-Commerce are positively influenced by number of M-Commerce drivers (i.e. download speed, compatibility, convenience, security, customization, connectivity, and input mechanism).

Keywords: M-Commerce, perceived usefulness, technology acceptance model, perceived ease of use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
2334 A Review of Critical Success Factor in Building Maintenance Management Practice for University Sector

Authors: S.H. Zulkarnain, E.M.A Zawawi, M.Y. A. Rahman, N.K.F. Mustafa

Abstract:

Building maintenance plays an important role among other activities in building operation. Building defect and damages are part of the building maintenance 'bread and butter' as their input indicated in the building inspection is very much justified, particularly as to determine the building performance. There will be no escape route or short cut from building maintenance work. This study attempts to identify a competitive performance that translates the Critical Success Factor achievements and satisfactorily meet the university-s expectation. The quality and efficiency of maintenance management operation of building depends, to some extent, on the building condition information, the expectation from the university sector and the works carried out for each maintenance activity. This paper reviews the critical success factor in building maintenance management practice for university sectors from four (4) perspectives which include (1) customer (2) internal processes (3) financial and (4) learning and growth perspective. The enhancement of these perspectives is capable to reach the maintenance management goal for a better living environment in university campus.

Keywords: Building maintenance, Critical Success Factor, Management, University

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5706
2333 Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control

Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy

Abstract:

Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.

Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243
2332 Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model

Authors: Md Rashadul Islam, Mesbah U. Ahmed, Rafiqul A. Tarefder

Abstract:

This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been used to develop the Finite Element Model (FEM) of this pavement section. Geometry and layer thickness are collected from field coring. Input parameters i.e. stiffnesses of different layers of the pavement are used as the backcalculated ones. Resulting surface deflections at different radial distances from the FEM analysis are compared with field FWD deflection values. It shows close agreement between the FEM and FWD outputs. Therefore, the FWD test method can be considered to be a reliable test procedure for evaluating the in situ stiffness of pavement material.

Keywords: Falling weight deflectometer test, Finite element model, Flexible pavement, moduli, surface deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
2331 Node Pair Selection Scheme in Relay-Aided Communication Based On Stable Marriage Problem

Authors: Tetsuki Taniguchi, Yoshio Karasawa

Abstract:

This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.

Keywords: Relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
2330 Developing Improvements to Multi-Hazard Risk Assessments

Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson

Abstract:

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

Keywords: Cascading hazards, multi-hazard, risk assessment, risk reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
2329 Implementation of SU-MIMO and MU-MIMOGTD-System under Imperfect CSI Knowledge

Authors: Parit Kanjanavirojkul, Kiatwarakorn Keeratishananond, Prapun Suksompong

Abstract:

We study the performance of compressed beamforming weights feedback technique in generalized triangular decomposition (GTD) based MIMO system. GTD is a beamforming technique that enjoys QoS flexibility. The technique, however, will perform at its optimum only when the full knowledge of channel state information (CSI) is available at the transmitter. This would be impossible in the real system, where there are channel estimation error and limited feedback. We suggest a way to implement the quantized beamforming weights feedback, which can significantly reduce the feedback data, on GTD-based MIMO system and investigate the performance of the system. Interestingly, we found that compressed beamforming weights feedback does not degrade the BER performance of the system at low input power, while the channel estimation error and quantization do. For comparison, GTD is more sensitive to compression and quantization, while SVD is more sensitive to the channel estimation error. We also explore the performance of GTDbased MU-MIMO system, and find that the BER performance starts to degrade largely at around -20 dB channel estimation error.

Keywords: MIMO, MU-MIMO, GTD, Imperfect CSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2328 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong

Abstract:

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
2327 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
2326 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das

Abstract:

Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.

Keywords: offline, algorithm, FAR, FRR, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
2325 New Triangle-Ring UWB Bandpass Filter with Sharp Roll-Off and Dual Notched Bands

Authors: Hung-Wei Wu, Yung-Wei Chen, Yu-Fu Chen, Cheng-Yuan Hung

Abstract:

This paper presents a new ultra-wideband (UWB) bandpass filter (BPF) with sharp roll-off and dual-notched bands. The filter consists of a triangle ring multi-mode resonator (MMR) with the stub-loaded resonator (SLR) for controlling the two transmission zeros at 2.8 / 11 GHz, the embedded open-circuited stub and the asymmetric tight coupled input/output (I/O) lines for introducing the dual notched bands at 5.2 / 6.8 GHz. The attenuation slope in the lower and higher passband edges of the proposed filter show 160- and 153-dB/GHz, respectively. This study mainly provides a simple method to design a UWB bandpass filter with high passband selectivity and dual-notched bands for satisfying the Federal Communications Commission (FCC-defined) indoor UWB specification

Keywords: steeply slopes transition band, bandpass filter, ultra-wideband (UWB), triangle-ring, multi-mode resonator, stub-loaded resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
2324 Interaction of Building Stones with Inorganic Water-Soluble Salts

Authors: Z. Pavlík, J. Žumár, M. Pavlíková, R. Černý

Abstract:

Interaction of inorganic water-soluble salts and building stones is studied in the paper. Two types of sandstone and one type of spongillite as representatives of materials used in historical masonry are subjected to experimental testing. Within the performed experiments, measurement of moisture and chloride concentration profiles is done in order to get input data for computational inverse analysis. Using the inverse analysis, moisture diffusivity and chloride diffusion coefficient of investigated materials are accessed. Additionally, the effect of salt presence on water vapor storage is investigated using dynamic vapor sorption device. The obtained data represents valuable information for restoration of historical masonry and give evidence on the performance of studied stones in contact with water soluble salts.

Keywords: Moisture and chloride transport, sandstone, spongillite, moisture diffusivity, chloride diffusion coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2323 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
2322 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: Climate changes, dry soil, Phytopathogenicity, Predictive model, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
2321 Estimation of Skew Angle in Binary Document Images Using Hough Transform

Authors: Nandini N., Srikanta Murthy K., G. Hemantha Kumar

Abstract:

This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.

Keywords: Dilation, Document processing, Hough transform, Optical Character Recognition, Skew estimation, and Thinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
2320 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications

Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar

Abstract:

The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based    k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.

Keywords: Aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
2319 Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.

Keywords: Conventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494