@article{(Open Science Index):https://publications.waset.org/pdf/1315,
	  title     = {Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection},
	  author    = {K.M. Faraoun and  A. Boukelif},
	  country	= {},
	  institution	= {},
	  abstract     = {This paper describes a new approach of classification
using genetic programming. The proposed technique consists of
genetically coevolving a population of non-linear transformations on
the input data to be classified, and map them to a new space with a
reduced dimension, in order to get a maximum inter-classes
discrimination. The classification of new samples is then performed
on the transformed data, and so become much easier. Contrary to the
existing GP-classification techniques, the proposed one use a
dynamic repartition of the transformed data in separated intervals, the
efficacy of a given intervals repartition is handled by the fitness
criterion, with a maximum classes discrimination. Experiments were
first performed using the Fisher-s Iris dataset, and then, the KDD-99
Cup dataset was used to study the intrusion detection and
classification problem. Obtained results demonstrate that the
proposed genetic approach outperform the existing GP-classification
methods [1],[2] and [3], and give a very accepted results compared to
other existing techniques proposed in [4],[5],[6],[7] and [8].},
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {1},
	  number    = {10},
	  year      = {2007},
	  pages     = {3111 - 3122},
	  ee        = {https://publications.waset.org/pdf/1315},
	  url   	= {https://publications.waset.org/vol/10},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 10, 2007},