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Abstract—Support vector regression (SVR) has been regarded
as a state-of-the-art method for approximation and regression. The
importance of kernel function, which is so-called admissible support
vector kernel (SV kernel) in SVR, has motivated many studies
on its composition. The Gaussian kernel (RBF) is regarded as a
“best” choice of SV kernel used by non-expert in SVR, whereas
there is no evidence, except for its superior performance on some
practical applications, to prove the statement. Its well-known that
reproducing kernel (R.K) is also a SV kernel which possesses many
important properties, e.g. positive definiteness, reproducing property
and composing complex R.K by simpler ones. However, there are a
limited number of R.Ks with explicit forms and consequently few
quantitative comparison studies in practice. In this paper, two R.Ks,
i.e. SV kernels, composed by the sum and product of a translation
invariant kernel in a Sobolev space are proposed. An exploratory
study on the performance of SVR based general R.K is presented
through a systematic comparison to that of RBF using multiple
criteria and synthetic problems. The results show that the R.K is
an equivalent or even better SV kernel than RBF for the problems
with more input variables (more than 5, especially more than 10) and
higher nonlinearity.

Keywords—admissible support vector kernel, reproducing kernel,
reproducing kernel Hilbert space, support vector regression.

I. INTRODUCTION

SUPPORT vector regression (SVR) [1] has been widely
applied in the field of regression and approximation. It

is a novel sparse kernel modeling method whose objective
is to learn an unknown function based on a training set of
N input-output pairs in a black box modeling approach [2].
It’s shown that SVR possesses many advantages, e.g. no local
optima, good ability of generalization, intrinsic regularization
and the sparseness of support vectors, etc. These advantages
encourage researchers focus on applying it into various fields,
e.g. approximation [2], [3], prediction [4], [5] and other
applications [6]. The tutorial can be seen in [7], [8].

It’s well known that the approximation performance of SVR
lies on the training data and kernel function. A kernel is
called admissible support vector kernel (SV kernel) [8] if the
Mercer’s condition [9] is satisfied. Mercer’s condition is one
of popular methods to validate whether a prospective kernel
is a positive definite function since any SV kernel should be
capable of corresponding to a dot product in high dimensional
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feature space. Kernel function is regarded as a significant trick
which benefits the computation of dot products in feature space
using simple function defined on pairs of input patterns [10],
[11]. In addition, the SV kernel implies the features of data
in feature space since it contains all the information about the
relative positions of data, i.e. choosing different kernels will
produce different SVMs.

It’s usually, however, time-consuming and demanding to
validate a SV kernel. It’s known that almost all the methods,
e.g. Mercer’s method, only tell us whether or not a prospective
kernel is actually a dot product in a given space, but it
does not show how to construct the feature map and the
images of the input data in the feature space and even what
the feature space is. The best choice of the best choice
of a kernel for a given problem is still an open research
issue [12], though there are some kernels, e.g. polynomial
kernel K(x, x′) = (< x, x′ > +1)d, Gaussian kernel (RBF)
K(x, x′) = exp(− ‖ x − x′ ‖ /(2σ2)) and sigmoid kernel
K(x, x′) = tanh(v < x, x′ > +c). It’s found that the
polynomial kernel is usually inferior in the problem with
higher nonlinearity and sigmoid kernel performs closely to
RBF but with complex form conditional satisfaction with
Mercer’s condition, and consequently seems obscure to the
non-specialist [8]. Research has shown that RBF is not only
theoretically well-founded but also superior in some practical
classification applications [12], [13]. However, the perfor-
mance of RBF is sensitive to the parameter σ [14], and there is
no evidence that the RBF is the optimal choice for regression,
especially dealing with multivariable complex functions.

Therefore, many researches are devoted to the study on the
composition method of SV kernels and related properties, e.g.
hybrid composition method based on some operations of ker-
nels, e.g. positive linear combinations, integrals and products,
etc. [8], [15], [16], multi-scale kernel [17] and wavelet kernel
[18], [19] as well as the feature space of kernel mapping [20],
such as reproducing kernel Hilbert space (RKHS) [21], [22],
etc. Recently, the multi-scale kernel and RKHS becomes the
research focuses. Although the former adopts techniques from
wavelet theory and shift invariant spaces to construct a new
class of kernels, it still bases on the framework of RKHS [17].
Therefore, we pay our attention to the kernel in RKHS.

RKHS owes the name to the so-called reproducing ker-
nel(R.K) function, which could be regarded as a SV kernel.
Although the basis concept and principle [23], frames [24],
properties [25], and conceptual comparison of R.K to the
other kernels, e.g. Mercer kernel, positive definite kernel
(PDK) [26], etc., have been well studied, there are relatively
little work on quantitative analysis and comparison in SVR
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based on some R.Ks with explicit forms. Firstly, there is
a notorious problem i.e. parameter selection in SVR, which
usually hinders the applicability of SVR. Secondly, very little
work has been published on the methods for computing R.K,
and consequently a limited number of R.Ks are available. And
finally, it’s shown that some operations of simpler R.K can
compose more complex R.Ks [23]. It results in a capability
of handling multiple inputs separately. In other words, the
R.K can handle different input dimensions in a closed form
with different nonlinear mapping functions based on the need
of modelers or some credible prior knowledge, such as the
independence among some input dimensions. However the
conventional kernels, e.g. RBF, do not implicate the potential
knowledge in their constructions.

In this paper, a new composition method of SV kernel based
on R.K is proposed and two SV kernels with explicit forms
are composed based on a simpler R.K in Sobolev RKHS
H1(R; a, b). Subsequently, some systematic comparative stud-
ies on fitting precision and efficiency of the R.Ks to RBF are
presented for eight synthetic problems under different criteria.
The results show that these R.Ks perform closely to RBF in
the problems with fewer input dimensions (less than 5) and
relatively lower nonlinearity whereas superiorly in ones with
more dimensions (more than 5, especially more than 10) and
higher nonlinearity.

II. PRELIMINARY

A. SVR Formulation
Given an training set D = {(xi, yi), i = 1, ..., l} ⊂ Ω× R,

where Ω denotes the space of the input data (e.g. Ω = R
d,

where d denotes dimensionality of input). All the SV algo-
rithms aim at minimizing an upper bound of the generalization
error through maximizing the margin between the separating
hyperplane and the data, which is based on the structural
risk minimization principle [8]. It is to train a model as
y =< w, φ(x) > +b, which minimizes a general risk function
as follows:

1

2
‖ w ‖2 +C

l∑
i=1

L(yi, f(xi)) (1)

where w controls the flatness of the model, φ(x) is a mapping
function, b is the bias, < ·, · > denotes the dot product,
constant C > 0 determines the trade-off between error
minimization and the maximization of the function flatness.
In this paper, the ε-insensitive loss functionLε [1] is used

Lε(y, f(x)) = |y − f(x)|ε = max{0, |f(x)− y| − ε} (2)

where ε ≥ 0 is a constant controlling the noise tolerances.
It’s well-known that SVR can be formulated as the following

quadratic programming (QP) problem [8] which can be solved
efficiently by many well-documented optimization algorithms:

min
α,α∗

1
2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi, xj)

+
l∑

i=1

(αi + α∗
i )ε−

l∑
i,j=1

(αi − α∗
i )yi

s.t.
l∑

i=1

(αi − α∗
i ) = 0, αi, α

∗
i ∈ [0, C], i = 1, ..., l

(3)

Consequently, the regression model takes a form as follows:

f(x) =
∑

i∈SV
(ᾱi − ᾱ∗

i )K(xi, x) + b (4)

where i ∈ SV denotes the indices of support vectors (SVs),
i.e. xiwith nonzero ᾱi or ᾱ∗

i , K(·, ·)is the kernel function
Obviously, the complexity of (4) depends only on the

amount of SVs (ASV) and SV kernel rather than the dimen-
sionality of the input space Ω. In fact, the SVs, which depend
on the selection of kernel and coefficients of SV algorithm
[12], can be automatically extracted. In other words, the major
task of the SVM lies in the selection of its kernel [15].

B. Conditions for SV Kernel

Kernel function is a crucial ingredient in SVR, and a kernel
is called a SV kernel if it satisfies Mercer’s condition[8], since
the kernel used in QP formulation (3), has to be a positive
definite function. This paper is mainly focus on SV kernels
with positive definiteness that are appropriate for general
discussion, though there are lots of works on replacing the
QP by a linear programming (LP) [27], [28]. Obviously, any
SV kernel also can be employed in a LP formulation.

Choosing different kernel functions will produce different
SV algorithms and may result in different performances [15].
It is because, as stated in the previous section, different
SV kernel implies different feature space, and consequently
different reflection of the feature of the estimation function.

The question that raises now is, whether a function K(s,
t) corresponds to a dot product in a feature space. There
are many researches, e.g. [1], [8], [29], [30]. The following
theorems, including Mercer’ and Bochner’s theorem, represent
the function.

Theorem 1: Let Ω be a closed subset of R
n, n ∈ N, μ is

a Borel measure on Ω. Suppose K ∈ L∞(Ω2) such that the
integral operator TK : L2(Ω) → L2(Ω) defined by

TKf(·) :=
∫
Ω

K(·, x)f(x)dμ(x) (5)

is semi-positive. Let ψi ∈ L2(Ω) be the eigenfuntion of TK
associated with the eigenvalue λi �= 0 and normalized such
that ‖ ψi ‖L2= 1 and let ψi denote its complex conjugate.
Then

(i) (λi(T ))i ∈ l1
(ii) ψi ∈ L∞(Ω) and supi ‖ ψi ‖L∞<∞
(iii) K(x, x′) =

∑
i∈N λiψi(x)ψi(x

′) (referred to as Mercer
kernel) holds for almost all (x, x′), where the series converges
absolutely and uniformly for almost all (x, x′).

Less formally speaking this theorem means that if∫
Ω×Ω

K(x, x′)f(x)f(x′)dxdx′ ≥ 0, for allf ∈ L2(Ω) (6)

holds, we can write K(x, x′) as a dot product in some
feature space, i.e. any function K(x, x′) who satisfies Mercer’s
condition is a SV kernel. Unfortunately, the validation is still
of difficulty and intractability.

Theorem 2: Given a positive finite Borel measure μ on R,
the Fourier transform Q of μ, i.e.Q(t) =

∫
R
e−itxdμ(x) is a

continuous function, then Q is a positive definite function and
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vice versa. In other words, every positive definite function is
the Fourier transform of a positive finite Borel measure, i.e.
the kernel takes the form K(x, x′) = Q(x − x′) is positive
definite, and vice versa.

Here, the kernel function in theorem 2 is called translation
invariant kernel, e.g. RBF K(x, x′) = exp(− ‖ x − x′ ‖2
/(2σ2)). Smola et al. [29] presented the following method for
validating a SV kernel based on the Bochner’s theorem [30].

Theorem 3: A kernel K(x, x′) = K(x− x′) is an admissi-
ble SV kernel if and only if the Fourier transform

F [K](ω) = K̂(ω) = (2π)−
d
2

∫
Ω

e−i<ω,x>K(x)dx (7)

is nonnegative.
Moreover, for kernels K(x, x′) = K(< x, x′ >)(dot-

product kernel), there exists sufficient conditions for being
admissible. We do not detail it as it’s not concerned with in
this paper, for further details see [31].

III. PERSPECTIVES OF REPRODUCING KERNEL

A. Definition of Reproducing Kernel

The abstract theory of RKHS has been developed over a
number of years outside the domain of SVR [23]. A variety
of applications, especially in data interpolation and smoothing,
are dealt in a RKHS, because the RKHS provides a rigorous
and effective framework for smooth multivariate interpolation
of arbitrarily scattered data and for accurate approximation of
general multidimensional functions [32], [33]. In this section,
some basic concepts are introduced briefly. For more details
on RKHS see e.g. [21], [23], [25], [34].

Defintion 1: Let Ω ⊆ R
d be an arbitrary nonempty set, H

is a Hilbert space of function f : Ω → R (short forf ∈ R
Ω).

H is called a reproducing kernel Hilbert space (RKHS) if there
exists K : Ω× Ω → R, satisfies the following:

(i) ∀x, Kx(y) = K(y, x) as a function of y belongs to H.
(ii) The reproducing property: ∀x ∈ Ω, and ∀f ∈ H,

f(x) =< f,Kx > (8)

(iii) H is spanned by K, i.e., H = span{Kx(·)|x ∈ Ω}
Here, v is called the native space of K [25].

Defintion 2: (R.K) K : Ω × Ω → R is called a R.K of H,
if it satisfies the conditions (i) and (ii) in Definition 1.

The R.K possesses some basic properties, e.g. uniqueness,
existence, positive definiteness, convergence and projection,
etc. [23]. Additionally, there are some attractive properties
which would be contributed to compose more complex R.Ks,
that is, let Ki (i=1,2) is the R.K of the RKHS Hi with the
norms ‖ · ‖i, then

Property 1: K = K1 + K2 is the R.K of a RKHS H of
all functionsf = f1 + f2 with fi ∈ Hi, i = 1, 2, and with
the norm defined by ‖ f ‖2= min{‖ f1 ‖21, ‖ f2 ‖22}, i.e. the
minimum taken for all the decompositions f = f1+ f2 where
fi ∈ Hi, i = 1, 2.

Note that the property can be extended to the case where
K =

∑n
i=1Ki. In addition, the difference of R.Ks is also a

R.K; more details see [23] for reference as well.
Property 2: The direct product of H1 and H2 possesses a

R.K K(x1, x2, y1, y2) = K1(x1, y1)K2(x2, y2).

From property 2, we see immediately that the kernel
K(x, y) = K1(x, y)K2(x, y) is positive definite as the re-
striction of the kernel K(x1, x2, y1, y2) to the subset Ω1 ⊂ Ω
consisting of the “diagonal” element {x, x} ∈ Ω as shown in
[23]. Similarly to property 1, the product property also can be
extended to the case where K =

∏n
i=1Ki.

B. Relations between SV Kernel and Reproducing Kernel

It’s necessary to discuss the relations between various
kernels to validate whether a R.K can be used as a SV kernel.
It is hoped that the discussion here would help to bridge the
conceptual gap between some familiar kernels, e.g. positive
(semi-)definite kernel (PDK), Mercer kernel and R.K, whereas
some of the observations are not new or profound.

Defintion 3: Let Ω be a subset of R
n, n ∈ N, K : Ω ×

Ω → R is symmetric and positive (semi-)definite (PD), if and
only if for arbitrary finite sets {x1, ..., xm} ⊆ Ω, the matrix
K = (K(xi, xj))1≤i,j≤m is symmetric and positive definite,
i.e. ∀m ∈ N, ∀ci ∈ R, for any x1, ...xm ∈ Ω, i = 1, ..m,K
satisfies the following inequation∑m

i,j=1
cicjK(xi, xj) ≥ 0 (9)

Theorem 4: K : Ω×Ω → R is a SV kernel iff K is a PDK.
The proof is obvious. Refer to e.g. [35].
Theorem 5: K : Ω× Ω → R is a Mercer kernel iff K is a

PDK.
Proof: if K is a Mercer kernel, i.e. there exists a map

function Φ such that K(t, s) =< Φ(s),Φ(t) >. Then,∑m

i,j=1
cicjK(xi, xj) =

∑m

i,j=1
cicj < Φ(xi),Φ(xj) >

= ‖
∑m

i=1
ciΦ(xi) ‖2≥ 0

thus, K is a PDK according to (9).
For the converse, if K is a PDK, K is a Mercer kernel

according to Theorem 4 and 1, which completes the proof.
Theorem 6: K : Ω × Ω → R is a Mercer kernel iff there

exists a RKHS H with R.K K, i.e. HK(Ω).
Proof: According to Moore–Aronszajn Theorem [23], any

PDK K is associated with a space HK(Ω) and vice versa.
Note that the Theorem 5 holds if K is a PDK, that is, K is a
Mercer kernel, which completes the proof.

IV. ILLUSTRATIVE EXAMPLES

Almost all the researches on SVR in RKHS framework are
limited to theoretic rather than practical study, e.g. represen-
tation theorem, prime and dual expression [36] etc., though
it has proven that any R.K can be used as a SV kernel. On
the one hand, the fact that the RBF is regarded as a R.K
in an unknown RKHS and shows significant performance, in
some sense, hinders the studies on the performance of more
general R.K in practical applications. On the other hand, it’s
always a difficult and challenging task for computing a R.K
with explicit form [23], [37]. In this paper, an exploratory
research on the performance of SVR based general R.K will
be discussed.

Noted that it is concerned as a time consuming and demand-
ing task to conclude whether a function could strictly satisfy
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Mercer’s or Bochner’s theorem or not. In fact, there are quite
limited off-the-shelf SV kernels, especially the translation
invariant kernels which strictly satisfy the Theorem 2 or
3, except for the R.K, namelyKH(x, y), in Sobolev RKHS
H1(R; a, b) [38]. Consequently, it is expected to provide a new
alternative to compose more complex SV kernels for SVR.

Defintion 4: (Sobolev RKHS) Sobolev RKHS H1(R; a, b)
is a space consisting of all absolutely continuous functions
f(x), x ∈ R and with the following finite norm:

‖ f ‖=
∫
R

a2 |f ′(x)|2 + b2 |f(x)|2 dx <∞, a, b > 0 (10)

The corresponding R.K KH(x, y) is as follows:

KH(x, y) =
1

2ab
e−

b
a |x−y| =

1

2π

∫
R

exp (iω(x− y))

a2ω2 + b2
dω

(11)
Note that KH in (11) is a SV kernel, since it is a translation

invariant kernel, and K̂H(ω) = (b2 + a2ω2)−1 ≥ 0, where
K̂H denotes the Fourier transform of KH. In other words,
KH satisfies Theorem 3.

Suppose x ∈ R
n is an input, where xi ∈ R is the ith

component of x. According to properties of R.K, we can obtain
two complex R.Ks based on (11), that is,

(i)KPRK(x, y) = (
∑n

i=1
KH(xi, yi))/n (12)

(ii)KMRK(x, y) =
∏n

i=1
KH(xi, yi) (13)

Corollary 1: KPRK (x, y) (PRK for short) is a SV kernel.
Proof: Since KH(xj , yj) is a R.K, then KH(xj , yj)is a PDK

from Theorem 4. In other words, for ∀m ∈ N, xi1, ..., x
i
m ∈ R,

∀cj ∈ R, j = 1, ...,m, we have∑m

j,k=1
cjckKi(x

i
j , x

i
k) ≥ 0 (14)

Since for any x̄ ∈ R
n, it can be uniquely composed by

xi ∈ R, i = 1, ..., n, then we have
m∑

j,k=1

cjckKPRK(x̄j , x̄k) =
m∑

j,k=1

cjck
n∑

i=1

aiKH(xij , x
i
k)

=
n∑

i=1

ai
m∑

j,k=1

cjckKH(xij , x
i
k) ≥ 0

(15)
Therefore, PRK is a PDK according to (9), and consequently

is a SV kernel from Theorem 4, which completes the proof.
Corollary 2: KMRK(x, y) (MRK for short) is a SV kernel.
Proof: In fact that KHis a Mercer kernel, since KH is a

R.K. From Mercer’s theorem, ∀m ∈ N, the following kernel
Gram matrix KH of KH to x1, ..., xm ∈ R

KH :=
(
KH(xi, xj)

)m
i,j=1

(16)

is positive (semi-)definite.
Using a classical Schur product theorem, it is easy to prove

that the kernel Gram matrix K of MRK is also a positive
(semi-)definite matrix. Then, MRK is a Mercer kernel, and
also a SV kernel from Theorem 4 and 5, which achieves our
assertion.

V. SYNTHETIC PROBLEMS AND TEST SCHEME

A. Features of Synthetic Problems

To test the performance of SVR based on different SV
kernels, eight synthetic problems are selected and classified
based on the features stated in [39], i.e.

(a) Problem scale (dimensionality of input). Three relative
scales are considered, i.e. small scale (dimensionality is 2∼5, S
for short), medium scale (dimensionality is 6∼9, M for short)
and large scale (dimensionality≥10, L for short).

(b) Nonlinearity of behavior. Similarly to [39], the prob-
lems are classified into two categories: low-order nonlinearity
(functions which are polynomial or that can be transformed to
polynomial with degree less than 4, L for short) and high-order
nonlinearity (otherwise, H for short).

(c) Smoothness of performance behavior. In this paper, the
two forenamed features, i.e. problem scale and nonlinearity
order are major research focus, therefore the noisy behavior is
artificially created using local variations of a smooth function
as shown in Table I. “No” denotes smooth without any noise
and “Yes” denotes noisy behavior.

TABLE I
FEATURES OF SYNTHETIC PROBLEMS

Problem
No.

Scale (No.
of variables)

Non-linearity
order

Noisy
behavior

Symbol

P1 Small (l =2) Linear No S-L
P2 Small (l =2) Low-order nonlinear No S-L
P3 Small (l =2) Low-order nonlinear Yes S-L
P4 Small (l =2) High-order nonlinear No S-H
P5 Medium (l =6) Low-order nonlinear No M-L
P6 Medium (l =6) High-order nonlinear No M-H
P7 Large (l =10) Low-order nonlinear No L-L
P8 Large (l =10) High-order nonlinear No L-H

A summary of the features of the eight synthetic problems
is given in Table I, and some symbols will be used in the next
section. These problems utilized in this paper are or similar
to the problems in [39], which are listed in the Appendix.

B. Parameter Selection in SVR based on Genetic Algorithm
and Data Sampling based on Latin Hypercube Design

Parameter selection is a notorious problem since SV algo-
rithm is very sensitive to the adequate choice of parameter val-
ues [7], which makes it hard for non-experts. Fortunately, there
are only a handful of parameters, i.e. 1) regularization constant
C, 2) tolerance error ε, 3) coefficients of SV kernel itself, e.g.
kernel width σ in RBF and a, b in MRK and PRK, will impact
on the prediction performances. It is, however, a combinatorial
optimization problem, and also a NP-hard problem, to select
a segment from thousands of their infinite combinations. Lots
of papers have shown that genetic algorithm (GA) [40], [41]
is useful to solve the combinatorial problem without prior
knowledge. The GA based on GAOT toolbox with its standard
settings is used to obtain the best parameters evolutionally
[42], since the strategy of setting parameters is not our research
focus.
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Furthermore, the performance of SVR under different train-
ing and validating sample sizes, i.e. small data set (S for
short) and large data set (L for short), is also compared. In
order to sample more valuable training and validating sample,
a good design of experiment (DOE) is very important [43],
[44], because the information included in the training data
set determines the performance of regression and prediction.
Here, a conventional reduced sampling technique, i.e. Latin
Hypercube sampling (LHS), is employed to sample data.

In this paper, two observation sets {xi, yi}ni=1, i.e. large set
(n=200, L for short) and small set (n = 100, S for short), are
generated by LHS, where half of them are selected randomly
as training data and others as validating data to assess the
accuracy of newly predicted points.

Remark: some tags will be introduced to denote different
test schemes with different synthetic problems listed in Table
I , e.g. ”S-L-S” denotes S-L synthetic problems trained with
small data set, where the third letter denotes the sample size.

C. Metrics for Performance Measures

To evaluate the performance of SVR based on general R.K,
two qualitative criteria, i.e. fitting precision and efficiency, are
used to compare the performance of MRK, PRK to that of
RBF.

1) Fitting Precision. Including accuracy and robustness,
where (i) accuracy means the capability of predicting
the system response over the design space of interest
and (ii) robustness means the capability of achieving
good accuracy for different problems types and sample
sizes.

2) Efficiency. The computational effort required for training
a SVR and predicting new data sets.

To provide a more complete picture of precision and effi-
ciency, the criteria above can be measured by several quantita-
tive metrics, i.e. R square (R2), relative average absolute error
(RAAE), relative maximum absolute error (RMAE), which
are used to measure the fitting precision, and modeling time
(MT ), amount of SVs (ASV ) are employed to evaluate the
efficiency. The R2RAAE and RMAE are given in (17)-(19),
respectively.

R2 = 1−
l∑

i=1

(yi − ŷi)
2

/
l∑

i=1

(yi − y)2 (17)

RAAE =
l∑

i=1

|yi − ŷi|
/

l∑
i=1

|yi − y| (18)

RMAE = n×max{|yi − ŷi|}li=1

/
n∑

i=1

|yi − y| (19)

where ŷi denotes the corresponding predicted value for ob-
served value yi, y denotes the mean of the observed values.

Generally speaking, 1) the larger the value of R2, the more
accurate the SVR; 2) the smaller the value of RAAE, the
more accurate the SVR; 3) a small RMAE is preferred
and large RMAE indicates large error in one region of the
design space. However, it is not as important as R2 and

RAAE. Furthermore, the variance indicates the robustness of
accuracy, i.e. the smaller the variance, the more robust the
kernel function; more details see in [39], [44].

For the convenience of defining the fitness function in GA,
a new measure, Integration Precision (IP), is introduced:

IP = α(βR2 + (1− β)/RAAE) + (1− α)/RMAE (20)

where α, β ∈ [0, 1] are weights. In this paper, α = 0.9, β =
0.5 to indicate that R2 and RAAE are more important than
RMAE. It is obvious that the larger the IP, the more precise
the SVR. Furthermore, the optimal results mentioned latter
imply the computation result with the “best” parameters when
IP is largest.

Furthermore, the larger ASV and MT , the more inefficient
in SVR, where MT indicates the used training and validating
time on existing data set, and ASV , according to (4), implies
the predicting efficiency in new data.

VI. SIMULATION RESULTS AND ANALYSIS

Based on the proposed schemes for comparative study, there
are 36 ∗ 10 ∗ 1000 = 360000 SVR models are trained for
the eight synthetic problems (see Table I), where there are
12 test schemes for each three kernels, i.e. the small scale
problems are trained only with small data set and others are
trained under both sets as stated above. Moreover, 10 and
1000, which implies population size and maximum generation,
are the parameters in GA,

A. Fitting Precision

To illustrate the performance of SVR based on PRK, MRK
and RBF under different schemes, multiple bar-charts are
shown. While the mean indicates the average performance
of SVR, the variance illustrates the robustness of the perfor-
mance. Henceforth, the performance of SVR based on a certain
kernel is called that of the kernel for short, e.g. the accuracy
of RBF.

1) Overall Performance: Illustrated in Figs. 1 and 2, the
mean and variance of the precision metrics for all three kernels
under all the test schemes, i.e. different problem scales, orders
of nonlinearity, smoothness and sample sizes, are shown.

Fig. 1 shows that the average accuracies of R.Ks and RBF
are close for all the test schemes, though more strictly speaking
RBF is slightly superior to the R.Ks. However, in terms of the
robustness for all the optimal results shown in Fig. 2, RBF
is no longer the best kernel, because the variances of R2 and
RAAE are distinctly larger than R.Ks. In other words, the
features of test schemes have less impact on R.Ks than that
on RBF. Moreover, the result that RPK possesses the better
robustness than MRK is also shown in Fig. 2.

Overall, R.K is shown to be an equivalent or even better
SV kernel than RBF, in terms of the average accuracy and
robustness. Especially, it is shown that PRK possesses the best
robustness, whereas there is a drawback in practice for PRK
as the parameters have to be selected appropriately to ensure
the robustness for given problems.
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Fig. 1. Mean of Precision Metrics with Optimal Results
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Fig. 2. Variance of Precision Metrics with Optimal Results

2) Performance for Different Types of Problems: Figs.3 and
4 illustrate the mean and variance bar-charts for different types
of problems. In these figures, the labels for each subfigure are
listed in Table I. The values in Figs.3 and 4 are derived based
on the data from all sample sizes (small and large). It is noted
that:

(i) Roughly speaking, the order of accuracy of all the three
kernels based SVR is small > medium > large, and the higher
the nonlinearity, the lower the accuracy.

(ii) It’s shown that MRK and RBF perform closely in all
types of problems, whereas PRK performs worse for S-L, S-
H and M-L problems but best for others, i.e. M-H, L-L and
L-H problems. The numerical results can be seen in Table II.
Especially for M-H, L-L and L-H problems, RBF has worst
accuracy, which implies that RBF is not the optimal choice
for the cases that the dimensionality of input is relatively large
(>5) and regression curve is rough, even though the SVR is
trained with the best parameters.

(iii) All the three kernels have similar variance of R2 and
RAAE for all problem types, which implies that they possess
the similar global accuracy (R.Ks have smaller variances for
large scale problems). However, the variances of RMAE
in R.K are relative larger than RBF for S-L, S-H and L-L
problems, which means R.Ks can not fit as well as RBF in
local areas, shown in Table III (all the values were multiplied
by 1000).

Overall, the fact that all the kernels perform best for S-L,
S-H, M-H and L-L problems (where their R2 all close to 1
shown in Table II) indicates SVR is adapted to approximate the
functions within these problem types. Moreover, R.K-based
SVR performs better than RBF-based SVR in medium and

MRK PRK RBF
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0.2

0.4

0.6

0.8

1

(a) S−L problem
MRK PRK RBF

0

0.2

0.4
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1

(b) S−H problem

MRK PRK RBF
0
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1

1.5

(c) M−L problem
MRK PRK RBF
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1

(d) M−H problem

MRK PRK RBF
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(e) L−L problem
MRK PRK RBF

0

1

2

3
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R2 RAAE RMAE

Fig. 3. Mean of Accuracy Metrics for Different Types of Problems
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(b) S−H problem
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(c) M−L problem
MRK PRK RBF

0

0.02
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(d) M−H problem

MRK PRK RBF
0

0.005
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0.015

0.02

0.025

(e) L−L problem
MRK PRK RBF

0

0.2

0.4

0.6

0.8

(f) L−H problem

R2 RAAE RMAE

Fig. 4. Variance of Accuracy Metrics for Different Types of Problems

large scale problems. It implies that RBF is just an acceptable
rather than optimal kernel in SV algorithm at all time.

3) Performance under Different Sample Size: Fig 5 shows
the mean of accuracy performance of the kernels under
different sample sizes (i.e. S: small set and L: large set)
respectively, where the labels for tick marks along the x
axis denote the different problem types with different sample
sizes, for example “P6 L” and “P6 S” denote the problem 6
listed in Table I are trained with large and small scale sample
respectively.

It’s shown that these three kernels can achieve good fitting
precision for P5 L to P7 S, where R.Ks are better than RBF for
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Fig. 5. Mean of Accuracy Metrics under Different Sample Scales ( (a) R2, (b) RAAE and (c) RMAE )

TABLE II
SUMMARY OF MEAN OF ACCURACY METRICS FOR PROBLEM TYPES

S-L S-H M-L M-H L-L L-H

MRK 0.99622 0.99720 0.86217 0.96237 0.97727 0.27742

R
2

PRK 0.98034 0.99694 0.69269 0.97461 0.98355 0.43261

RBF 0.99925 0.99974 0.97103 0.91422 0.96165 0.26443

Best RBF RBF RBF PRK PRK PRK

MRK 0.03201 0.04637 0.32181 0.17964 0.14137 0.91483

R
A
A
E

PRK 0.09454 0.04504 0.49973 0.14901 0.11734 0.83658

RBF 0.01476 0.01227 0.14554 0.25954 0.17472 0.93863

Best RBF RBF RBF PRK PRK PRK

MRK 0.29695 0.13526 1.29190 0.75520 0.57797 3.36105

R
M

A
E

PRK 0.49971 0.13141 1.71138 0.55182 0.46775 3.06000

RBF 0.13214 0.05927 0.63484 1.30120 0.73280 2.84003

Best RBF RBF RBF PRK PRK RBF

all the problem types except for P5. In addition, the impacts of
sample size on average accuracy of all the kernels are relatively
smaller for P6 and P7. It’s also observed that, the smaller the
sample size, the lower the accuracy.

B. Efficiency

The efficiency of each kernel-based SVR is measured by the
time used for SVR training and new predictions The former,
referred to as MT , which includes two parts, i.e. the time for
training SVR with the given training data set and the time
for validating with test data set, depends on the problem scale
and the sample size. And the time used for a new prediction
just depends on the amount of SVs and kernel type. In this

TABLE III
SUMMARY OF VARIANCE OF ACCURACY METRICS FOR PROBLEM TYPES

S-L S-H M-L M-H L-L L-H

MRK 0.02500 4.28711 5.28699 0.10294 0.06394 19.5798

R
2

PRK 0.31821 0.24991 0.04231 0.06704 0.02336 1.05634

RBF 0.00111 0.02100 0.16647 0.00081 0.08341 19.7319

Best RBF RBF PRK RBF PRK PRK

MRK 0.86582 4.94504 6.93542 2.91023 0.89302 56.5760

R
A
A
E

PRK 5.93907 4.21719 1.28327 2.00939 0.29934 54.0109

RBF 0.12273 0.00807 0.18631 0.84272 0.33971 47.6868

Best RBF RBF RBF RBF PRK RBF

MRK 38.5129 106.280 168.962 2.28069 18.1802 100.672

R
M

A
E

PRK 82.4435 69.7875 5.39769 0.32046 26.2748 843.211

RBF 11.4125 11.6976 103.529 83.7204 0.77053 21.1269

Best RBF RBF PRK PRK RBF RBF

paper, the MT is recorded on Matlab7.5 workstation with its
“stopwatch timer” function.

1) Variations of Modeling Time: Fig. 6 shows the mean
of MT for different problem types and sample sizes. Some
conclusions can be summarized as follows:

(i) The MT increases with (a) the problem scale and (b)
the order of nonlinearity;

(ii) The larger the sample data set for training SVR, the
larger the MT ;

(iii) The MTs of PRK and RBF are close for all test
schemes, whereas that of MRK are distinct smallest.

It’s obvious that MRK is the most efficient kernel for
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Fig. 6. Statistics of MT under Different Test Schemes
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Fig. 7. Statistics of ASV under Different Test Schemes

training SVR models. It’s found that, relatively speaking,
RBF is somewhat superior to PRK for large scale problems,
however greatly inferior to MRK for all the test schemes.
Moreover, the sample size has more dramatic impact on PRK
and RBF than MRK, which implies R.K is more efficient than
RBF.

2) Variations of the Amount of Support Vector: Fig. 7
illustrates the mean of the amount of SVs (ASV) under all
the test schemes. It’s noted that:

(i) The ASV generally increases with (a) the problem scale
and (b) the order of nonlinearity. However, strictly speaking,
the ASV is largest for the large scale problem with higher
nonlinearity for a large sample set, because the potential SVs,
which carry the most information, concentrate in the rough
regions of a curve.

(ii) The larger the sample data set for training SVR, the
larger the ASV;

(iii) MRK generates more SVs than RBF, though the MT of
MRK is smallest. Furthermore, RBF and PRK have the similar
ASV for all the test schemes, which indicates that they possess
the same generalization ability. Whereas, strictly speaking, the
ASV of RBF is smallest, which may explain that why RBF is
usually employed in SV algorithms for problems without any
prior information. Overall, the efficiency of R.K is close or
sometimes superior to that of RBF, especially when there are
large number of training samples and problem dimensions.

VII. CONCLUSION

The systematic comparative study presented in this paper
has provided insightful observations into the performance of
the SVR based on the conventional RBF and two general R.Ks.

In terms of the accuracy and efficiency of SVR based on
the three kernels for different all the test schemes, it’s noted
that conventional RBF can only perform good for small scale
problems and medium scale problem with lower nonlinearity,
whereas the R.Ks are superior to RBF for others (shown in
Table IV). It implies that R.K can be used as an equivalent or
even better SV kernel than RBF for more complex regression
problems.

TABLE IV
SUMMARY OF BEST SV KERNEL FOR ACCURACY

Small scale Medium scale Large scale

Low-order nonlinearity RBF RBF PRK
High-order nonlinearity RBF PRK PRK
Overall RBF RBF/PRK PRK

It’s believed that the SVR is a superior method for ap-
proximating complex functions, e.g. a function with higher
dimensionality (>5) and nonlinearity (i.e. L-H problem), to
other black-box modeling approaches, such as polynomial.
It’s also observed that the sample size and distribution as
well as the underlying noise have significant impact on the
performance of the SVR. Therefore, appropriate amount of
training data of good quality are needed to ensure a fast and
accurate approximation and prediction. In other words, an
effective data sampling technique (such as sequential design
or adaptive sampling strategy) is regarded as an important step
before training a SVR model.

Finally, more synthetic problems are to be considered in the
future work. Moreover, the incorporation of prior knowledge
(e.g. some useful structural or numeric knowledge) in SVR
can improve the quality of the regression model, which is of
interests to further explore.

APPENDIX A

P1: f(x) = 4x1 − 5x2
P2: f(x) = 0.5x21 + x22 − x1x2 − 7x1 − 7x2
P3: f(x) = 0.5x21+x

2
2−x1x2−7x1−7x2+Noise(rand)

where Noise(rand) ∼ N(0, 0.5) denotes adding some
N(0, 0.5) noise at some random points.

P4: f(x) = exp(−x21 − x22) + 3 sin(x1)
P5: f(x) = (x1−1)2+0.5(x2−x3)2+0.5(0.5x4+0.5x5−

x6)
2

P6: f(x) =
6∑

j=1

{
exp(xj)

(
cj + xj − ln

(
6∑

k=1

exp(xk)

))}
,

cj = −6.09,−17.16,−24.05,−15.91,−24.72,−14.99
P7: f(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 7)2 −

4(x4 − 5)2 + (x5 − 3)2 − 2(x6 − 1)2 + 5x27 − 7(x8 − 5)2 +
2(x9 − 10)2 − (x10 − 7)2 + 45

P8: f(x) =
10∑
j=1

[(ln(xj − 2))2 + (ln(10− xj))
2], xj ∈

[2.1, 9.9]
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