Search results for: classification algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2453

Search results for: classification algorithms

683 Application of Transportation Linear Programming Algorithms to Cost Reduction in Nigeria Soft Drinks Industry

Authors: A. O. Salami

Abstract:

The transportation problems are primarily concerned with the optimal way in which products produced at different plants (supply origins) are transported to a number of warehouses or customers (demand destinations). The objective in a transportation problem is to fully satisfy the destination requirements within the operating production capacity constraints at the minimum possible cost. The objective of this study is to determine ways of minimizing transportation cost in order to maximum profit. Data were sourced from the records of the Distribution Department of 7-Up Bottling Company Plc., Ilorin, Kwara State, Nigeria. The data were computed and analyzed using the three methods of solving transportation problem. The result shows that the three methods produced the same total transportation costs amounting to N1, 358, 019, implying that any of the method can be adopted by the company in transporting its final products to the wholesale dealers in order to minimize total production cost. 

Keywords: Allocation problem, Cost Minimization, Distribution system, Resources utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8802
682 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
681 A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

Authors: S. Raja Balachandar, K. Kannan

Abstract:

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Keywords: Set covering problem, velocity, gravitational force, Newton's law, meta heuristic, combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
680 Data Mining on the Router Logs for Statistical Application Classification

Authors: M. Rahmati, S.M. Mirzababaei

Abstract:

With the advance of information technology in the new era the applications of Internet to access data resources has steadily increased and huge amount of data have become accessible in various forms. Obviously, the network providers and agencies, look after to prevent electronic attacks that may be harmful or may be related to terrorist applications. Thus, these have facilitated the authorities to under take a variety of methods to protect the special regions from harmful data. One of the most important approaches is to use firewall in the network facilities. The main objectives of firewalls are to stop the transfer of suspicious packets in several ways. However because of its blind packet stopping, high process power requirements and expensive prices some of the providers are reluctant to use the firewall. In this paper we proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. By discriminating these data, an administrator may take an approach action against the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
679 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: Image fusion, iris recognition, local binary pattern, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
678 Analysis of a Population of Diabetic Patients Databases with Classifiers

Authors: Murat Koklu, Yavuz Unal

Abstract:

Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.

Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
677 Cloud Computing Cryptography "State-of-the-Art"

Authors: Omer K. Jasim, Safia Abbas, El-Sayed M. El-Horbaty, Abdel-Badeeh M. Salem

Abstract:

Cloud computing technology is very useful in present day to day life, it uses the internet and the central remote servers to provide and maintain data as well as applications. Such applications in turn can be used by the end users via the cloud communications without any installation. Moreover, the end users’ data files can be accessed and manipulated from any other computer using the internet services. Despite the flexibility of data and application accessing and usage that cloud computing environments provide, there are many questions still coming up on how to gain a trusted environment that protect data and applications in clouds from hackers and intruders. This paper surveys the “keys generation and management” mechanism and encryption/decryption algorithms used in cloud computing environments, we proposed new security architecture for cloud computing environment that considers the various security gaps as much as possible. A new cryptographic environment that implements quantum mechanics in order to gain more trusted with less computation cloud communications is given.

Keywords: Cloud Computing, Cloud Encryption Model, Quantum Key Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094
676 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
675 A Dual Fitness Function Genetic Algorithm: Application on Deterministic Identical Machine Scheduling

Authors: Saleem Z. Ramadan, Gürsel A. Süer

Abstract:

In this paper a genetic algorithm (GA) with dual-fitness function is proposed and applied to solve the deterministic identical machine scheduling problem. The mating fitness function value was used to determine the mating for chromosomes, while the selection fitness function value was used to determine their survivals. The performance of this algorithm was tested on deterministic identical machine scheduling using simulated data. The results obtained from the proposed GA were compared with classical GA and integer programming (IP). Results showed that dual-fitness function GA outperformed the classical single-fitness function GA with statistical significance for large problems and was competitive to IP, particularly when large size problems were used.

Keywords: Machine scheduling, Genetic algorithms, Due dates, Number of tardy jobs, Number of early jobs, Integer programming, Dual Fitness functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
674 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach

Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy

Abstract:

Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.

Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
673 A Survey of Business Component Identification Methods and Related Techniques

Authors: Zhongjie Wang, Xiaofei Xu, Dechen Zhan

Abstract:

With deep development of software reuse, componentrelated technologies have been widely applied in the development of large-scale complex applications. Component identification (CI) is one of the primary research problems in software reuse, by analyzing domain business models to get a set of business components with high reuse value and good reuse performance to support effective reuse. Based on the concept and classification of CI, its technical stack is briefly discussed from four views, i.e., form of input business models, identification goals, identification strategies, and identification process. Then various CI methods presented in literatures are classified into four types, i.e., domain analysis based methods, cohesion-coupling based clustering methods, CRUD matrix based methods, and other methods, with the comparisons between these methods for their advantages and disadvantages. Additionally, some insufficiencies of study on CI are discussed, and the causes are explained subsequently. Finally, it is concluded with some significantly promising tendency about research on this problem.

Keywords: Business component, component granularity, component identification, reuse performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
672 Incremental Mining of Shocking Association Patterns

Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas

Abstract:

Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.

Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
671 Optimal Route Policy in Air Traffic Control with Competing Airlines

Authors: Siliang Wang, Minghui Wang

Abstract:

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
670 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
669 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
668 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
667 Construct Pairwise Test Suites Based on the Bak-Sneppen Model of Biological Evolution

Authors: Jianjun Yuan, Changjun Jiang

Abstract:

Pairwise testing, which requires that every combination of valid values of each pair of system factors be covered by at lease one test case, plays an important role in software testing since many faults are caused by unexpected 2-way interactions among system factors. Although meta-heuristic strategies like simulated annealing can generally discover smaller pairwise test suite, they may cost more time to perform search, compared with greedy algorithms. We propose a new method, improved Extremal Optimization (EO) based on the Bak-Sneppen (BS) model of biological evolution, for constructing pairwise test suites and define fitness function according to the requirement of improved EO. Experimental results show that improved EO gives similar size of resulting pairwise test suite and yields an 85% reduction in solution time over SA.

Keywords: Covering Arrays, Extremal Optimization, Simulated Annealing, Software Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
666 Medical Image Edge Detection Based on Neuro-Fuzzy Approach

Authors: J. Mehena, M. C. Adhikary

Abstract:

Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.

Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
665 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: Relational Database, Functional Dependency, Automatic Normalization, Primary Key, Spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
664 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

Authors: P. Subbaraj, V. Rajasekaran

Abstract:

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.

Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
663 A Context-Aware Supplier Selection Model

Authors: Mohammadreza Razzazi, Maryam Bayat

Abstract:

Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.

Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
662 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
661 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces

Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet

Abstract:

In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.

Keywords: Dropwise condensation, textured surface, image processing, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
660 Optimum Design of Trusses by Cuckoo Search

Authors: M. Saravanan, J. Raja Murugadoss, V. Jayanthi

Abstract:

Optimal design of structure has a main role in reduction of material usage which leads to deduction in the final cost of construction projects. Evolutionary approaches are found to be more successful techniques for solving size and shape structural optimization problem since it uses a stochastic random search instead of a gradient search. By reviewing the recent literature works the problem found was the optimization of weight. A new meta-heuristic algorithm called as Cuckoo Search (CS) Algorithm has used for the optimization of the total weight of the truss structures. This paper has used set of 10 bars and 25 bars trusses for the testing purpose. The main objective of this work is to reduce the number of iterations, weight and the total time consumption. In order to demonstrate the effectiveness of the present method, minimum weight design of truss structures is performed and the results of the CS are compared with other algorithms.

Keywords: Cuckoo search algorithm, levy’s flight, meta-heuristic, optimal weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
659 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
658 A Predictive Rehabilitation Software for Cerebral Palsy Patients

Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux

Abstract:

Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.

Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
657 Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images

Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisation

Keywords: Anatomical soft tissue landmarks, automatic localisation, Computed Tomography (CT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
656 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
655 The Load Balancing Algorithm for the Star Interconnection Network

Authors: Ahmad M. Awwad, Jehad Al-Sadi

Abstract:

The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.

Keywords: Interconnection networks, Load balancing, Star network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
654 The Delaying Influence of Degradation on the Divestment of Gas Turbines for Associated Gas Utilisation: Part 1

Authors: Mafel Obhuo, Dodeye I. Igbong, Duabari S. Aziaka, Pericles Pilidis

Abstract:

An important feature of the exploitation of associated gas as fuel for gas turbine engines is a declining supply. So when exploiting this resource, the divestment of prime movers is very important as the fuel supply diminishes with time. This paper explores the influence of engine degradation on the timing of divestments. Hypothetical but realistic gas turbine engines were modelled with Turbomatch, the Cranfield University gas turbine performance simulation tool. The results were deployed in three degradation scenarios within the TERA (Techno-economic and environmental risk analysis) framework to develop economic models. An optimisation with Genetic Algorithms was carried out to maximize the economic benefit. The results show that degradation will have a significant impact. It will delay the divestment of power plants, while they are running less efficiently. Over a 20 year investment, a decrease of $0.11bn, $0.26bn and $0.45bn (billion US dollars) were observed for the three degradation scenarios as against the clean case.

Keywords: Economic return, flared associated gas, net present value, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106