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Abstract—A new Meta heuristic approach called ”Randomized
gravitational emulation search algorithm (RGES)” for solving large
size set covering problems has been designed. This algorithm is found
upon introducing randomization concept along with the two of the
four primary parameters ’velocity’ and ’gravity’ in physics. A new
heuristic operator is introduced in the domain of RGES to maintain
feasibility specifically for the set covering problem to yield best
solutions. The performance of this algorithm has been evaluated on
a large set of benchmark problems from OR-library. Computational
results showed that the randomized gravitational emulation search
algorithm - based heuristic is capable of producing high quality
solutions. The performance of this heuristic when compared with
other existing heuristic algorithms is found to be excellent in terms
of solution quality.

Keywords—Set covering Problem, Velocity, Gravitational Force,
Newton’s Law, Meta Heuristic, Combinatorial optimization.

I. INTRODUCTION

There is a class of problems, whose exponential complex-
ities have been established theoretically are known as NP
problems. Designing polynomial time algorithms for such
a class of problems is still open. Due to the demand for
solving such problems, Researchers are constantly attempting
to provide heuristic solutions one after the other focusing
the optimality by introducing several operators with salient
features such as (i) reducing the computational complexity,
(ii) randomization etc.,
Some NP problems are Set covering problem, Traveling
salesman problem, Problem of Hamiltonian paths, Knapsack
problem, Problem of optimal graph coloring. If a polynomial
time solution can be found for any of these problems, then
all of the NP problems would have polynomial solutions. NP
complete problems are described more detail in [15].

The set covering problem (SCP) is a main and fundamental
model for several important applications. Crew scheduling
problem in bus, railway and mass-transit transportations com-
panies where a given set of trips has to be covered by a mini-
mum - cost set of pairings, a pairing being a sequence of trips
that can be prepared by a single crew [9] are worth mentioning.
Though both exact (optimal) and heuristic approaches have
been presented in the literature, this problem is still a difficult
NP-complete problem.
The set covering problem (SCP) is the problem of covering
the rows of this m-row, n-column, zero-one matrix (aij) by
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a subset of the columns at minimal cost. Defining xj = 1
if column j (with cost cj > 0 ) is the solution and xj = 0
otherwise.
It can be formulated as a binary integer program as follows:
minimize

n∑
j=1

cjxj (1)

subject to
n∑

j=1

aijxj ≥ bj, i = 1, 2, ...,m (2)

xj ∈ {0, 1} , j = 1, 2, 3, ..., n (3)

Equation (2) ensures that each row is covered by at least
one column and (3) is the integral of constraint. The cost
coefficients cj are equal to 1 the problem is referred to as
the unicost SCP, otherwise,the problem is called the weighted
or non-unicost SCP. The SCP has been proved to be NP -
complete [15].

In this paper, a new optimization algorithm based on the law
of gravity, namely Randomized gravitational emulation search
algorithm (RGES) is proposed. This algorithm is based on the
Newtonian gravity: ” Every particle in the universe attracts
every other particle with a force that is directly proportional
to the product of their masses and inversely proportional to
the square of the distance between them”.
This article demonstrates that RGES technique is capable of
producing better quality results for the large size set covering
problem than other heuristic approaches.
This paper is organized as follows: A brief survey of various
approaches pertaining to this problem is elucidated in section
II. In section III, we introduce the basic concepts of our
algorithm. The proposed RGES is presented in section IV.
The algorithm’s utility is illustrated with help of benchmark
problems in section V and we include the extensive compar-
ative study of result of our heuristic with existing state-of-art
heuristics. Salient features of this algorithm are enumerated
in section VI, finally concluding remarks are given in section
VII.

II. PREVIOUS WORK

The SCP with arbitrary positive costs is NP-hard [15].
Several exact and heuristic approaches to solve SCPs have
been reported to literature.
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Existing exact algorithms are essentially based on branch-
and-bound and branch-and-cut. Fisher and Kedia [14] pro-
posed an exact branch-and-bound algorithm based on a dual
heuristic and able to solve instances with 200 constraints
upto 2000 variables. Beasley combined a Lagrangian-based
heuristic, feasible solution exclusion constraints, Gomory’s
f-cuts, to improve the branching strategy for strengthening
his algorithm [4].This algorithm could solve instances with
constraint matrices upto the order of 400 X 4000 [6]. Harche
and Thompson [19] developed an exact algorithm, called
”column subtraction”, which is capable of solving sparse
instances of set covering problems. These optimal algorithms
are based on tree-search algorithm. Since exact methods have
limitations such as ’suffering for optimality’, very heavy
computational efforts, very large search space etc. Researchers
started desiring approximation algorithms to meet the needs of
less computation with high quality. The heuristic approaches
can be divided into two main categories.
The first one exploits problem characteristics and specific
features of each instance. Examples include Lagrangian
relaxation-based procedures, sub gradient optimization meth-
ods[5], the relaxed dual model exploitation[10], and surrogate
optimization [25]. Greedy algorithms is found to be the first
natural heuristic approach for solving large size combinatorial
problems. As for the SCP, the simplest approach is the greedy
algorithms [12]. Although simple, fast and easy to code;
Greedy algorithms could rarely generate solution of good
quality as a result of their myopic and deterministic nature.
Researchers have attempted to improve greedy algorithms
by introducing randomization concept. These randomized or
probabilistic greedy algorithms [32, 13, 18] often generate
better results than pure greedy ones.
The second category includes local search procedures and the
adaptation of meta heuristics to the SCP, such as genetic algo-
rithm[7,31,1], ant colony algorithms[24], Simulated annealing
algorithms[21,22], Neural Network algorithms[27], as well as
specifically tailored local search procedure[34],but the quality
of meta heuristic approaches using some features from the first
category of heuristics, and the late appearances of a highly ef-
fective local search procedure make this category a competitive
approach. Due to the unicost version specific characteristics,
some specific heuristics have been developed for the unicost
case, and some general heuristics have been adapted to the
unicost case viz . Alminana and Poster adaptation [2], of a
Lops and Lorena proposal [25] heuristics based on Lagrangian
relaxations and the Surrogate problems solutions have been
tested for solving 60 newly generated random instances and
5 literature based instances. Grossman and Wool [16], has
designed neural network architecture (ANN) to solve unicost
SCP and shown the superiority of ANN over the other heuristic
algorithms available in literature. In this paper, we have
designed a meta heuristic algorithm based on gravity and
we enhanced the performance of RGES through feasibility
operator to obtain best solutions at less computational cost.

III. THE LAW OF GRAVITY

The gravitation is the tendency of masses to accelerate
toward each other. It is one of the four fundamental inter-

actions in nature [29] (the others are: the electromagnetic
force, the weak nuclear force, and the strong nuclear force).
Every particle in the universe attracts every other particle.
Gravity is everywhere. The inescapability of gravity makes
it different from all other natural forces. The way Newton’s
gravitational force behaves is called ”action at a distance”.
This means gravity acts between separated particles without
any intermediary and without any delay. In the Newton law
of gravity, each particle attracts every other particle with
a ’gravitational force’ [3,20,28,29,30,33]. The gravitational
force between two particles is directly proportional to the
product of their masses and inversely proportional to the
square of the distance between them [20]:

F =
GM1M2

R2
(4)

where F is the magnitude of the gravitational force, G is
gravitational constant, M1 and M2 are the mass of the first and
second particles respectively, and R is the distance between the
two particles. Newton’s second law says that when a force, F,
is applied to a particle, its acceleration, a, depends only on the
force and its mass, M [20]:

a =
F

M
(5)

Based on (4) and (5), there is an attracting gravity force
among all particles of the universe where the effect of bigger
and the closer particle is higher. An increase in the distance
between two particles means decreasing the gravity force be-
tween them. In addition, due to the effect of decreasing gravity,
the actual value of the ”‘gravitational constant” depends on the
actual age of the universe. Eq. (6) gives the decrease of the
gravitational constant, G, with the age [26]:

G(t) = G(to) × (
to

t
)β , β < 1, (6)

where G(t) is the value of the gravitational constant at
time t. G(to) is the value of the gravitational constant at the
first cosmic quantum-interval of time to [26]. Three kinds of
masses are defined in theoretical physics:
Active gravitational mass, Ma, is a measure of the strength of
the gravitational field due to a particular object. Gravitational
field of an object with small active gravitational mass is weaker
than the object with more active gravitational mass.
Passive gravitational mass, Mp, is a measure of the strength
of an object’s interaction with the gravitational field. Within
the same gravitational field, an object with a smaller passive
gravitational mass experiences a smaller force than an object
with a larger passive gravitational mass.
Inertial mass, Mi, is a measure of an object resistance to
changing its state of motion when a force is applied. An
object with large inertial mass changes its motion more slowly,
and an object with small inertial mass changes it rapidly.
Now, considering the above-mentioned aspects, we rewrite
Newton’s laws. The gravitational force, Fij , that acts on mass
i by mass j, is proportional to the product of the active
gravitational of mass j and passive gravitational of mass i, and
inversely proportional to the square distance between them.
ai is proportional to Fij and inversely proportional to inertia
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mass of i. More precisely, one can rewrite Eqs. (4) and (5) as
follows:

Fij =
GMajMpi

R2
, (7)

ai =
Fij

Mii

, (8)

where Maj and Mpi represent the active gravitational mass
of particle i and passive gravitational mass of particle j,
respectively, and Mii represents the inertia mass of particle
i.

Although inertial mass, passive gravitational mass, and ac-
tive gravitational mass are conceptually distinct, no experiment
has ever unambiguously demonstrated any difference between
them. The theory of general relativity rests on the assumption
that inertial and passive gravitational mass are equivalent. This
is known as the weak equivalence principle [23]. Standard
general relativity also assumes the equivalence of inertial mass
and active gravitational mass; this equivalence is sometimes
called the strong equivalent principle [23].

IV. RANDOMIZED GRAVITATIONAL EMULATION SEARCH
ALGORITHM(RGES)

In this section, we introduce our optimization algorithm
based on the law of gravity [28]. In the proposed algorithm,
agents are considered as objects and their performance is
measured by their masses. All these objects attract each
other by the gravity force, and this force causes a global
movement of all objects towards the objects with heavier
masses. Hence, masses cooperate using a direct form of
communication, through gravitational force. The heavy masses
- which correspond to good solutions - move more slowly
than lighter ones, this guarantees the exploitation step of the
algorithm. In RGES, each mass (agent) has four specifications:
position, inertial mass, active gravitational mass, and passive
gravitational mass. The position of the mass corresponds to
a solution of the problem, and its gravitational and inertial
masses are determined using a fitness function. In other words,
each mass presents a solution, and the algorithm is navigated
by properly adjusting the gravitational and inertia masses.
By lapse of time, we expect that masses be attracted by the
heaviest mass. This mass will present an optimum solution in
the search space. The RGES could be considered as an isolated
system of masses. It is like a small artificial world of masses
obeying the Newtonian laws of gravitation and motion. More
precisely, masses obey the following laws:
Law of gravity: each particle attracts every other particle
and the gravitational force between two particles is directly
proportional to the product of their masses and inversely
proportional to the distance between them, R. We use here
R instead of R2, because according to our experiment results,
R provides better results than R2 in all experimental cases.
Law of motion: the current velocity of any mass is equal to the
sum of the fraction of its previous velocity and the variation
in the velocity. Variation in the velocity or acceleration of any
mass is equal to the force acted on the system divided by mass
of inertia.

A. Initiation

Now, consider a system with N agents (masses). We define
the position of the ith agent by:

Xi = (x1
i , x

2
i , ..., x

d
i , ..., x

n
i ) for i = 1, 2, 3, ..., N, (9)

where xd
i presents the position of ith agent in the dth

dimension. At a specific time ’t’, we define the force acting
on mass ’i’ from mass ’j’ as following:

F d
ij(t) = G(t)

Mpi(t) ×Maj(t)
Rij(t)+ ∈

(xd
i (t) − xd

i (t)), (10)

where Maj is the active gravitational mass related to agent
j, Mpi is the passive gravitational mass related to agent i, G(t)
is gravitational constant at time t, ∈ is a small constant, and
Rij(t) is the Euclidian distance between two agents i and j:

Rij = ‖Xi(t), Xj(t)‖2 , (11)

To give a stochastic characteristic to our algorithm, we
suppose that the total force that acts on agent i in a dimension
d be a randomly weighted sum of dth components of the forces
exerted from other agents:

F d
i (t) =

N∑
j=1,j �=i

randjF
d
ij(t), (12)

where randj is a random number in the interval [0, 1].
Hence, by the law of motion, the acceleration of the agent i
at time t, and in direction dth, ad

i (t),is given as follows:

ad
i (t) =

F d
i (t)

Mii(t)
, (13)

where Mii is the inertial mass of ith agent. Furthermore,
the next velocity of an agent is considered as a fraction of
its current velocity added to its acceleration. Therefore, its
position and its velocity could be calculated as follows:

vd
i (t+ 1) = randi × vd

i (t) + ad
i (t), (14)

xd
i (t+ 1) = xd

i (t) + vd
i (t+ 1), (15)

where randi is a uniform random variable in the interval
[0, 1]. We use this random number to give a randomized
characteristic to the search. The gravitational constant, G, is
initialized at the beginning and will be reduced with time to
control the search accuracy. In other words, G is a function of
the initial value (Go) and time (t):

G(t) = G(Go, t), (16)
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B. Evaluation of fitness and updating
Gravitational and inertia masses are simply calculated by

the fitness evaluation. A heavier mass means a more efficient
agent. This means that better agents have higher attractions and
walk more slowly. Assuming the equality of the gravitational
and inertia mass, the values of masses are calculated using the
map of fitness. We update the gravitational and inertial masses
by the following equations:

Mai = Mpi = Mii = Mi, i = 1, 2, 3, ..., N, (17)

mi(t) =
fiti(t) − worst(t)
best(t) − worst(t)

(18)

Mi(t) =
mi(t)∑N

j=1 mj(t)
, (19)

where fiti(t) represent the fitness value of the agent i at
time t, and, worst(t) and best(t) are defined as follows for a
minimization problem:

best(t) = min︸︷︷︸
j∈1,...,N

fitj(t), (20)

worst(t) = max︸︷︷︸
j∈1,...,N

fitj(t), (21)

One way to perform a good compromise between exploration
and exploitation is to reduce the number of agents with lapse
of time in Eq. (12). Hence, we propose only a set of agents
with bigger mass apply their force to the other. However, we
should be careful of using this policy because it may reduce
the exploration power and increase the exploitation capability.
We remind that in order to avoid trapping in a local optimum
the algorithm must use the exploration at beginning. By lapse
of iterations, exploration must fade out and exploitation must
fade in. To improve the performance of RGES by controlling
exploration and exploitation only the Kbest agents will attract
the others. Kbest is a function of time, with the initial value
Ko at the beginning and decreasing with time. In such a way,
at the beginning, all agents apply the force, and as time passes,
Kbest is decreased linearly and at the end there will be just one
agent applying force to the others. Therefore, Eq.(12) could
be modified as:

F d
i (t) =

∑
j∈Kbest,j �=i

randjF
d
ij(t), (22)

where Kbest is the set of first K agents with the best fitness
value and biggest mass.

C. Repair operator
The solutions(agents) may violate constraints. To make all

the solutions feasible an additional operator is needed. Here
a proposed heuristic operator consists of two phases namely
ADD phase and DROP phase that maintains the feasibility
of the solutions in the neighborhood being generated. The
steps required to make each solution feasible involve the
identification of all uncovered rows and the addition of

columns such that all rows are covered. This is done by the
ADD phase. Once columns are added, a solution becomes
feasible. DROP phase (a local optimization procedure) is
applied to remove any redundant column such that by
removing it from the solution, the solution still remains
feasible. In the algorithm, steps (i) and (ii) identify the
uncovered rows and add the least cost column to the solution
vector. Steps (iii) and (iv) identify the redundant column with
high cost and dropped from the solution. The time complexity
of this repair operator is O(mn).
Different steps of the repair operator are the followings

S1xn = solution vector
Bnxm = transpose of the constraint matrix
D1xn = temporary solution vector
C1xm = counter vector ( 0 entry of any position is used to
identify the uncovered rows)
(i)C = S ×B ( matrix multiplication)
(ii) ADD Phase
(a) For each 0 entry in C , find the first column j( cost of j is
in increasing order)
(b) Add j to S ie., S(j) = 1.
(c) D = S ( temporary )
(iii)DROP Phase
(a) Identify the column j ( cost in the decreasing order)
(b) Remove j from D, if C = D ×B have no zero entry, ie.,
D(j) = 0.
(c) S=D is a feasible solution for SCP that contains no
redundant columns.
The different steps of the proposed RGES algorithm are the
followings:

(a) Search space identification.
(b) Randomized initialization.
(c) Repair operator.
(d) Fitness evaluation of agents.
(e) Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2, ..., N.
(f) Calculation of the total force in different directions.
(g) Calculation of acceleration and velocity.
(h) Updating agents’ position.
(i) Repeat steps c to h until the stop criteria is reached.
(j) End.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This heuristic is tested on 65 SCP test instances from
Beasley’s OR library. The instances are divided into 11 sets
as in Table I, in which ’Density’ is the percentage of non
zero entries in the SCP matrix. Each of types 4 and 5 has 10
instances, each of types 6 and A-H has five instances. Problem
sets 4-6 and A-D are the ones for which optimal solution
values are known. Problem sets E, F, G and H are large size
SCPs for which optimal solution values are not known.

In our experimental study, 10 trials RGES heuristic were
made for each of the test problems. In all the cases, population
size and dimension are set to n and maximum iteration is
1000. This algorithm was implemented in C and tested in P-IV,
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TABLE I
TEST PROBLEM DETAILS

Problem set Number of Number of Density Number of
rows columns problems

4 200 1000 2 10
5 200 2000 2 10
6 200 1000 5 5
A 300 3000 2 5
B 300 3000 5 5
C 400 4000 2 5
D 400 4000 5 5
E 500 5000 10 5
F 500 5000 20 5
G 1000 10000 2 5
H 1000 10000 5 5

3.2GHz processor and 512 MB RAM running under Windows
XP. Table II exhibits computational results with the following
details: Instance: The name of the test problem appearing in
the Beasley’s ORLIB the first digit/alphabet indicating the
name of the problem set and floating digit representing the
problem number.

Opt: The number of trials out of 10 in which the RGES has
found the optimum solution /best known value.

Best: The number of trails out of 10 in which the RGES
found its best solution. Here it is worth mentioning that
for problems for which optimal solutions are available in
literature, the best solutions of proposed algorithm are equal
to optimum solutions.

Average Execution Time: Average execution time of RGES
algorithm for 10 trials.

Mean, Min, Max: The mean, min and maximum objective
values returned in the 10 trials (the value column) and the
respective percentages above the optimal value (in pct column)

We can observe that the RGES found optimal solutions
for all the instances. For 55 of the problems the RGES
found the optimal solution/best known solution in every trial.
The heuristic to return consistent solutions for smaller size
problems, for large size problems it returns solutions that vary
a little bit best higher (but close to each other in objective
value). The average gap between RGES solution and optimum
/ best known is 0.015.
< place table2 about here >

In order to bring out the efficiency of the proposed RGES
algorithm the solutions of the same set of test instances have
been compared with the other heuristic and Meta heuristic al-
gorithms (Simulated annealing, Genetic algorithm, Lagrangian
heuristic, Greedy, 3 flip neighborhood). Table III provides a
summary of the solution quality for these different heuristics
namely average gap (average = (solution - BKS)/BKS x 100),
number of optimum solutions and best solutions. RGES found
the optimal / best-known solutions for all the 65 test instances.
From this table, we can observe that RGES, CFT, and Meta-
RaPS have zero deviation from the best-known or optimal
solutions for these test problems.

The abbreviations mentioned in Table 3 stands for:
BJT: Simulated annealing by Brusco,Jacobs and Thom-

TABLE II
PERFORMANCE OF RGES ALGORITHM

Ins opt best Avg Mean Min Max
Exec Val pct Val pct Val pct
Time

4.1 10 10 189.5 429 0.0 429 0.0 429 0.0
4.2 10 10 182.0 512 0.0 512 0.0 512 0.0
4.3 10 10 179.6 516 0.0 516 0.0 516 0.0
4.4 10 10 188.2 494 0.0 494 0.0 494 0.0
4.5 10 10 183.8 512 0.0 512 0.0 512 0.0
4.6 10 10 185.0 560 0.0 560 0.0 560 0.0
4.7 10 10 185.9 430 0.0 430 0.0 430 0.0
4.8 10 10 181.1 492 0.0 492 0.0 492 0.0
4.9 10 10 189.3 641 0.0 641 0.0 641 0.0
4.10 10 10 184.6 514 0.0 514 0.0 514 0.0
5.1 10 10 195.7 253 0.0 253 0.0 253 0.0
5.2 10 10 194.0 302 0.0 302 0.0 302 0.0
5.3 10 10 198.3 226 0.0 226 0.0 226 0.0
5.4 10 10 192.0 242 0.0 242 0.0 242 0.0
5.5 10 10 199.2 211 0.0 211 0.0 211 0.0
5.6 10 10 193.8 213 0.0 213 0.0 213 0.0
5.7 10 10 194.7 293 0.0 293 0.0 293 0.0
5.8 10 10 197.9 288 0.0 288 0.0 288 0.0
5.9 10 10 198.0 279 0.0 279 0.0 279 0.0
5.10 10 10 191.6 265 0.0 265 0.0 265 0.0
6.1 10 10 190.4 138 0.0 138 0.0 138 0.0
6.2 10 10 187.5 146 0.0 146 0.0 146 0.0
6.3 10 10 193.7 145 0.0 145 0.0 145 0.0
6.4 10 10 194.0 131 0.0 131 0.0 131 0.0
6.5 10 10 188.8 161 0.0 161 0.0 161 0.0
A1 10 10 207.8 253 0.0 253 0.0 253 0.0
A2 10 10 210.0 252 0.0 252 0.0 252 0.0
A3 10 10 204.1 232 0.0 232 0.0 232 0.0
A4 10 10 208.9 234 0.0 234 0.0 234 0.0
A5 10 10 206.6 236 0.0 236 0.0 236 0.0
B1 10 10 211.1 69 0.0 69 0.0 69 0.0
B2 10 10 207.2 76 0.0 76 0.0 76 0.0
B3 10 10 209.8 80 0.0 80 0.0 80 0.0
B4 10 10 213.0 79 0.0 79 0.0 79 0.0
B5 10 10 205.4 72 0.0 72 0.0 72 0.0
C1 10 10 222.2 227 0.0 227 0.0 227 0.0
C2 10 10 226.0 219 0.0 219 0.0 219 0.0
C3 10 10 215.9 243 0.0 243 0.0 243 0.0
C4 10 10 228.6 219 0.0 219 0.0 219 0.0
C5 10 10 224.8 215 0.0 215 0.0 215 0.0
D1 10 10 219.4 60 0.0 60 0.0 60 0.0
D2 10 10 225.0 66 0.0 66 0.0 66 0.0
D3 10 10 227.7 72 0.0 72 0.0 72 0.0
D4 10 10 224.1 62 0.0 62 0.0 62 0.0
D5 10 10 228.0 61 0.0 61 0.0 61 0.0
E1 10 10 229.9 29 0.0 29 0.0 29 0.0
E2 10 10 237.9 30 0.0 30 0.0 30 0.0
E3 10 10 228.5 27 0.0 27 0.0 27 0.0
E4 10 10 231.4 28 0.0 28 0.0 28 0.0
E5 10 10 234.8 28 0.0 28 0.0 28 0.0
F1 10 10 230.6 14 0.0 14 0.0 14 0.0
F2 10 10 234.1 15 0.0 15 0.0 15 0.0
F3 10 10 235.8 14 0.0 14 0.0 14 0.0
F4 10 10 231.5 14 0.0 14 0.0 14 0.0
F5 10 10 236.0 13 0.0 13 0.0 13 0.0
G1 8 10 268.7 176.4 0.004 176 0.0 179 0.03
G2 9 10 255.3 154.1 0.001 154 0.0 155 0.01
G3 9 10 264.9 166.2 0.002 166 0.0 168 0.02
G4 10 10 268.5 168 0.0 168 0.0 168 0.0
G5 9 10 272.4 168.1 0.001 168 0.0 169 0.01
H1 10 10 266.0 63 0.0 63 0.0 63 0.0
H2 10 10 259.6 63 0.0 63 0.0 63 0.0
H3 8 10 261.8 59.2 0.002 59 0.0 60 0.01
H4 9 10 267.4 58.1 0.001 58 0.0 59 0.01
H5 10 10 273.0 55 0.0 55 0.0 55 0.0

son[8],BC: genetic algorithm by Beasley and Chu[7], Be: the
Lagrangian heuristic by Beasley [5], Grdy: Greedy heuristic
for set-covering problem[12] , CNS: Lagrangian -based heuris-
tic by Ceria, Nobili and Sassano [11], CFT: Lagrangian - based
heuristic by caprara, Fischetti and Toth [10], MMT: 3-flip
neighborhood local search by Mutsunori Yagiura, Masahiro
Kishida and Toshihide Ibaraki [34], Meta-RaPS - effective and
simple heuristic approach by Guanghui, Gail and Gary [17 ].

VI. FEATURES OF ALGORITHM

To see how the proposed algorithm is efficient some remarks
are noted: Since each agent could observe the performance of
the others, the gravitational force is an information-transferring
tool. Due to the force that acts on an agent from its neighbor-
hood agents, it can see space around itself. A heavy mass has
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TABLE III
SUMMARIZED RESULTS FOR THE SOLUTION QUALITY

Prob BJT BC Be Gry CFT Meta- RGES
set

RaPS
4 0.00 0.00 0.06 3.78 0.00 0.00 0.00
5 0.00 0.09 0.18 5.51 0.00 0.00 0.00
6 0.00 0.00 0.56 7.72 0.00 0.00 0.00
A 0.00 0.00 0.82 5.61 0.00 0.00 0.00
B 0.00 0.00 0.81 5.57 0.00 0.00 0.00
C 0.00 0.00 1.93 6.88 0.00 0.00 0.00
D 0.00 0.00 2.75 9.79 0.00 0.00 0.00
E 0.00 0.00 3.5 12.75 0.00 0.00 0.00
F 0.00 0.00 7.16 12.98 0.00 0.00 0.00
G 0.13 0.13 4.83 8.49 0.00 0.00 0.00
H 0.32 0.63 8.12 11.78 0.00 0.00 0.00

Over
all
gap 0.04 0.07 2.36 8.21 0.00 0.00 0.00

Total 65 65 65 65 65 65 65
Opt
/best

in
atleast

one trial 65 61 22 0 65 65 65

a large effective attraction radius and hence a great intensity of
attraction. Therefore, agents with a higher performance have a
greater gravitational mass. As a result, the agents tend to move
toward the best agent. The inertia mass is against the motion
and make the mass movement slow. Hence, agents with heavy
inertia mass move slowly and hence search the space more
locally. So, it can be considered as an adaptive learning rate.
Gravitational constant adjusts the accuracy of the search, so it
decreases with time (similar to the temperature in a Simulated
Annealing algorithm). RGES is a memory-less algorithm.
However, it works efficiently like the algorithms with memory.
Our experimental results show the good convergence rate of
the RGES. Here, we assume that the gravitational and the
inertia masses are the same. However, for some applications
different values for them can be used. A bigger inertia mass
provides a slower motion of agents in the search space and
hence a more precise search. Conversely, a bigger gravitational
mass causes a higher attraction of agents. This permits a faster
convergence.

VII. CONCLUSION

A feasibility operator based heuristic for the large size
set covering problem based on RGES has been developed.
Randomization enables the algorithm to escape from the local
search and pave a way leading to find optimal solutions.
Computational results indicate that our heuristic is able to
generate optimal solutions for small size problems in less
time. For large size problems the deviation from the optimal
solutions are very less and are much below the deviations
obtained by other existing algorithms.
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