
Segmentation of Gray Scale Images of Dropwise
Condensation on Textured Surfaces

Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet

Abstract—In the present work we developed an image processing
algorithm to measure water droplets characteristics during dropwise
condensation on pillared surfaces. The main problem in this process is
the similarity between shape and size of water droplets and the pillars.
The developed method divides droplets into four main groups based
on their size and applies the corresponding algorithm to segment each
group. These algorithms generate binary images of droplets based
on both their geometrical and intensity properties. The information
related to droplets evolution during time including mean radius and
drops number per unit area are then extracted from the binary images.
The developed image processing algorithm is verified using manual
detection and applied to two different sets of images corresponding
to two kinds of pillared surfaces.

Keywords—Dropwise condensation, textured surface, image
processing, watershed.

I. INTRODUCTION

DROPWISE condensation attracted lots of attention in

many industrial applications since about 80 years ago

[1] due to its high rate of heat transfer [2]. Though this

phenomenon is not preferred in optical applications, for

example in automotive industry the light passing through

car headlights distracts by water droplets generated during

dropwise condensation.

Generally condensation occurs when the temperature of

saturated air goes behind its dew point [3]. In this case, water

droplets start to nucleate either in the air mixture or on the cold

substrate of chamber walls. Regarding condensation on cold

substrate, nucleation can occur homogeneously (when there

is no preference between different spots for nucleation) or

heterogeneously (preferentially on the surface imperfections)

[4]. In both cases, dropwise condensation occurs in four

main steps: nucleation, growth of droplets by adsorbing water

molecule, coalescence and steady state. In the last step, a

constant pattern in both the size and number of droplets is

visible [5].

Heterogeneous dropwise condensation on textured surfaces

is now more attractive to scientists because of the ability of

controlling droplets configuration [6]. This idea could also be

interesting for optical applications. Indeed, this solution could
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make drops to form a continuous film or to drain quickly from

the surface of headlights or glasses. Thus, several techniques

were developed in order to study the characteristics and the

evolution of droplets on textured surfaces. The first step of

all these methods is the image processing techniques that

extract all droplets information from gray scale images. These

techniques deal with non intrusive methods with a high spatial

and temporal resolution [7].

Most of the time, such image processing algorithms

are divided into three main steps: pre-processing, drop

segmentation and drop reconstruction. The first one aims at

improving contrast and removing noise in order to facilitate

the drop segmentation step. The drop segmentation step

consists of isolating drops from the background and then

separating overlapping drops. The corresponding algorithms

can be classified into three groups: the ones based on the

shape analysis, based on the edge analysis, and based on

the intensity analysis. The algorithms based on the shape

analysis consider drops as circles with dark edges and bright

centers. These drops can be detected by using circle detection

methods like the Hough transform [8] and its improvements,

such as the normal-line Hough transform [9] and the coherent

circle Hough transform [10]. However, these methods are only

efficient for spherical droplets. The algorithms based on the

edge analysis use images generated by an edge detection

method [11]. For this purpose, the Canny method seems to

be the most convenient since although it is more sensitive

to noise with respect to other methods, it provides more

connected contours. Then the contour discontinuities that

represent multiple drops overlapping are detected. such points

are called breakpoints, that can be detected by means of several

techniques, either by rotating the edge curves [12] or by

analyzing their curvature [13], [14]. The main drawback of

these techniques is the noise sensitivity, which necessitates

to smooth the edge curvatures. A way to limit the noise

sensitivity of measurements is to use an adaptive curvature

[15]. Finally, the algorithms based on an intensity analysis use

the gray-level intensities as a drop presence indicator. These

intensities can be used directly like the PIV methods [16]

using a dynamic thresholding and watershed [17] or indirectly

like the appearance-based approaches using an isolated drop to

select the same appearance drops [18]. These methods can be

combined thorough a tree of decision to improve the detection

quality [7]. For instance, the PIV methods are particularly

efficient for isolated drops while the watershed method works

well for overlapping ones. However, this combination requires

a long computational time.

The drop reconstruction step consists of reconstructing
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missing parts of drops by determining their radius and

their centers. These methods can be divided into four main

groups: the ones based on ellipse fitting, based on the

geometrical analysis, based on the morphological analysis

and the ones using drop inner boundaries. The ellipse

fitting methods consist of recognizing ellipse-like shapes in

the image. For this purpose, least-squares fitting methods

[19] or k-means methods [20] are used. However, these

methods work only on ellipsoidal droplets. The geometrical

methods aim at determining whether two arcs belong to

the same drops by means of either correlation coefficients

[12] or applying convexity criteria directly to the contour

image [21] or to the polygonal approximation image [22].

The main drawback of these methods is the use of

deterministic parameters. The morphological techniques use

the morphological reconstruction principle. For this purpose,

overlapping drops are reduced to independent characteristic

areas before being reconstructed, but the percentage of

overlapping droplets must not be too high. Different techniques

can be used in this regard: successive erosion [23], [24],

skeletonization and shrinking [25] or the watershed technique

applied to a distance map [26]. After all, a final technique is

applied in order to complete missing parts of droplets by using

drops inner boundaries [7]. This last method necessitates high

inner boundaries quality.

However, in the case of textured surfaces, the pillars which

represent the texturation do not let one to use directly these

techniques, although they are adapted to different drop shapes

and image conditions. Indeed, pillars have the same properties

as drops, they have dark edges and bright centers. Moreover,

when the drop shape becomes irregularly connected over the

pillars, the already-existing methods are not able to separate

them and recognize each droplet. Thus, the goal of this work

is to find a way to detect separately drops and pillars in order

to analyze drop characteristics evolution on the surface.

This work consists of finding an automatic way to segment

drops on several textured surfaces in order to study droplets

characteristics. In the following, the experimental set-up

enabling to photograph textured surface under dropwise

condensation condition will be described. Then, the details of

the developed image processing algorithm will be presented.

Finally, the algorithm accuracy will be determined and the

measurement results will be discussed.

II. EXPERIMENTAL SET-UP

The schematic of the experimental set-up is shown in Fig. 1.

The textured substrate with temperature 281K is placed inside

a humid chamber with relative humidity of about 40% and air

temperature of 303K. The humid air is generated by mixing

filtered compressed air and saturated air.

Dropwise condensation on the sample is recorded by a

CCD gray scale camera at each second. This camera uses

a long-focal-distance adjustable lens in order to get a high

spatial resolution. The gray-level images are then used in the

following image processing algorithm.

Fig. 1 Schematic of the experimental set-up

Set of
images

First image
Other

images

pillar
characterization

Image
categorization

Medium
drops

Small drops
Very small

drops
Big drops

Drop segmentation
corresponding
at each size

Mean radius
Drop

number

Fig. 2 Schematic diagram of the image processing algorithm

III. IMAGE PROCESSING ALGORITHM

An image processing algorithm has been developed to

segment drops and to analyze drop characteristic evolution

during dropwise condensation. This algorithm is applied to a

set of images and it consists of three main steps as shown

in Fig. 2. The pillar characterization step aims at isolating

pillars in order to remove them from the other images. The

goal of the second step is to divide the image set into several

groups: very small drops, small drops, medium drops and

big drops. The first two groups refer to the drop growth by

adsorption. The third group corresponds to the coalescence

step and the last one corresponds to the steady state where

the changes in size and number of droplets are negligible.

After this categorization, the corresponding image processing

algorithm is applied to each group. Thus, an image of drop

segmentation is generated on which the mean radius and drop

number can be measured.

A. Pillar Characterization

The goal of this step is to isolate pillars from background in

order to remove them in the other images. In fact, pillars can
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entail mis-measurement because of their similar properties to

drops. As the images are taken without shifting, pillars are at

the same location on the images from the same set. So for the

purpose of pillar elimination, the first image of the considering

set is used because the drop presence can be neglected. The

algorithm is detailed in Fig. 3.

As pillars are perfectly circular, the circle Hough transform

is the most adapted technique. Moreover, an approximation

of pillar radius is known. Indeed, their real size is between

10 and 20 μm and according to the camera magnification,

the radius range considered for the Hough transform is [10;

30] pixels. It is important to consider a quite narrow range

in order to get accurate results and a low computational time.

To improve again the algorithm performances, the coherent

Hough transform is used [10].

By means of this method, all the pillars are detected except

the ones at the image borders. However, some artefacts are

detected too as shown in Fig. 3 (b). As they don’t have the

same size as pillars, a technique to solve this problem is to

consider the distribution of circle radius and to remove the

ones with an aberrant radius, as shown in Figs. 3 (c) and (d).

Thus, the circle radius must be inside the band [μ - 3.9 σ; μ
+ 3.9 σ] to be considered as pillars, where μ and σ are the

average and the standard deviation of the radius distribution.

At the same time, a manual pillar recognition test is led,

as shown in Fig. 3 (e). This secondary method enables to

confirm the position of pillars and to validate the calculated

radius. Indeed, if the radius are smaller than the real ones, the

pillar boundaries will not be taken into account and they will

be considered as pillars during the drop segmentation step.

Similarly, if the radius are wider than the real ones, some

drops will be removed.

Fig. 3 (f) shows that pillars from the Hough transform are

lightly smaller than the real ones, that can be explained by their

blurred boundaries. Consequently, the circles from the Hough

transform must be enlarged. In order to quantify the correct

radius, the equivalent circle radius is calculated by means of

the manual measurements. This equivalent radius refers to the

radius of the circle with the same center as the one from the

Hough transform but covering both the Hough transform circle

and the manual measured circle, as shown in Fig. 4. In our

case, pillar radius must be enlarged from four-pixel wide.

Finally, the binary image of the pillars is generated. The

image with the radius from the Hough transform is firstly

generated and then, the image is dilated by a disk structuring

element, whose radius corresponds to circle enlargement found

previously. The final results show visually good approximation

of the pillar location and dimension.

It is important to note that the pillars close to the image

borders can’t be detected because the missing parts are too

large. Thus, this problem must be taken into account in the

next parts of the algorithm. For instance, the images will be

resized.

B. Image Categorization

As mentioned previously, there are four kinds of drops:

very small drops, small drops, medium drops and big drops.

It is important to distinguish these groups because the drop

identification algorithm will be adapted to each kinds of drops.

This step is like a texturation determination process. Two

main categorization methods exist: the ones based on the

intensity distribution [27] and the ones based on the pattern

distribution [28], [29]. As the image categorization needs to be

very fast, the study of intensity histograms is more preferred

in our case.

Firstly, a sub-sampling of the image set is done to limit the

computational time. Thus, ten percent of images have been

chosen regularly, since the time step between images is equal

to 1s, 10% of images means the images have been taken after

each 10s. The corresponding gray-tone level histograms of

each studied image is determined. As shown in Fig. 5, the

number of major peaks in histograms vary as a function of

time. This variation represents the different drop sizes. Thus,

the ranges of each size group of drops are characterized:

- Very small drops: histogram with three major peaks,

corresponding to the background, the drop edge and the

drop center.

- Small drops: after a while when the histogram of

gray tone turns in to bimodal diagram, the majority of

droplets are called small droplets that grow mainly due

to adsorption. With respect to the former stage here the

peak related to the background disappeared because drops

tend to cover entirely the sample.

- Medium drops: In the third stage, drops start to coalesce

and their centers become larger with the same intensity as

background. Therefore the gray tone histogram will turn

to a unimodal diagram. The droplets at this stage are so

called medium drops.

- Big drops: Finally, when the droplets are big enough to

reach the steady state condition, the gray tone histogram

will have two peaks again, that refer to the drop edges

and centers.

C. Drop Identification

This last part of the algorithm consists of identifying drops

in each image during dropwise condensation in order to

determine the evolution of drop characteristics.

1) Very Small Drops: The very small drops refer to the

small elements between pillars (Fig. 6). The idea of this

algorithm is to segment drops by means of correct thresholding

values, as shown in Fig. 7.

At first, in order to eliminating the pillars, they are removed

by means of the image generated in the pillar characterization

step. Thus, a gray-level image is obtained with black holes

at pillar places, as shown in Figs. 7 (a) and (b). Fig. 7 (c)

shows the histogram corresponding to the images containing

very small droplets. This process is applied in parallel to the

first image at time of zero (Figs. 7 (d)-(f)).

The very small droplets spread the gray tone histogram

towards darker area, because generally they are darker than

the substrate. Therefore, the superposition point between these

two histograms can be used as thresholding value for Fig. 7

(a). But since there are lots of superposition points between

these two histograms along the vertical axis, the thresholding
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(a) Original image

(b) Hough transform (c) Artefact detection (d) Artefact removing

(e) Manual detection (f) pillar comparison

(h) pillar dilatation(g) pillar generation

Fig. 3 Algorithm for pillar characterization

Fig. 4 Equivalent circle determination

Fig. 5 Intensity histogram of (a) very small droplets at t = 100s, (b) small
droplets at t = 200s, (c) medium droplets at t = 500s and (d) big droplets

drops at t = 1500s

value can be calculated by finding the superposition point

with the maximum value. Fig. 7 (g) represents the difference

between these two histograms and the zero values in this graph

shows the superposition points. So the first zero point after the

Fig. 6 Image of very small drops on a textured surface

peak corresponds to the maximum superposition point or the

thresholding value. This value then used for thresholding the

images containing very small drops as is shown in Fig. 7 (h).

At last each region is labeled according to Fig. 7 (i). Therefore,

the number of regions corresponds to the drop number N , that

enables to determine the mean drop radius Ravg from the total

region area A:

Ravg =

√
Atot

Nπ
. (1)

2) Small Drops: Small drops are presented as small circular

elements which are smaller than the pillars in the images (Fig.

8). Since, at this step, droplets are perfectly circular, they can

be recognized by means of the Hough transform as shown in
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(g) Thresholding value

(c) Histogram(b) pillar removing(a) Original image

(f) Histogram(e) pillar removing(d) First image

(h) Thresholding

(i) Labelling

Fig. 7 Algorithm for very small drops

Fig. 9 (b).

Fig. 8 Image of small drops on a textured surface

Then, as shown in Fig. 9 (c), the circles corresponding to

pillars are removed by comparing the position of circle centers

between the considered image and the first image of the set.

A binary image is obtained (Fig. 9 (d)), it gives the total area

Atot of drops. To get the number of drops, the overlapping

drops need to be separated. For this purpose, the binary image

is turned into a distance map by the Euclidean distance (Fig.

9 (e)) and the watershed technique is applied to this distance

map (Fig. 9 (f)). A labeling step enables to get the drop number

and finally, the equation 1 gives the mean radius of drops.

3) Medium Drops: The medium drops form a continuous

cluster around pillars and drop centers look like background

regions (Fig. 10). Therefore, the centers of drops must be

determined by means of some criteria based on both geometry

and intensity (Fig. 11).

In this regard, the original images are firstly thresholded

by means of Otsu’s method as is shown in Fig. 11 (b). The

problem here is that white area represents both droplets center

and substrate. In order to recognising droplets center, two

techniques are applied to sufficiently large white regions. The

droplets centers are either more convex than substrate or are

less homogeneous in intensity. Consequently, the areas with

the convexity rate under 4 % (Fig. 11 (d)) or with low rate of

gradient magnitude refer to the drops centers (Fig. 11 (c)). The

limited rate of gradient magnitude corresponds to 4/5 of the

mean gradient magnitude of the neighborhoods. Finally, the

binary images of drops as in Fig. 11 (f) are made by applying

the watershed method.

4) Big Drops: Big drops are characterized by the fact

that they cover entirely several pillars as shown in Fig. 12.

For binarizing images containing big droplets, shrinking and

gradient properties are used (Fig. 13).

Firstly, the images are thresholded by a Otsu’s method

as shown in Fig. 13 (b). Then, the black parts are shrunk

in order to get their skeletons (Fig. 13 (c)) around the

white regions which correspond to either drops centers or

the background. As was explained for the medium drops,

the average of gradient magnitude is calculated on the white

regions according to Fig. 13 (d). Then, the distribution of this

value is divided into two groups by means of the histogram

specification, the median between the two main peaks, that

gives the criterion value (Fig. 13 (e)).

However, when several white regions belong to the same

drop, the watershed technique can’t be applied directly. To

solve this problem, the white regions are dilated and overlaid
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(a) Original image (b) Hough (c) pillar removing (d) Binary image (e) Distance map

(f) Watershed

Fig. 9 Algorithm for small drops

Fig. 10 Image of medium drops on a textured image

with the pillar image. Thus, the white regions which belong to

the same drop are connected. A test on convexity enables to

reconstruct each drop center (Fig. 13 (g)). Finally, a watershed

technique is used to detect each drop region (Fig. 13 (h)), that

enables to get the drops number and mean radius.

IV. ALGORITHM VERIFICATION

In order to measure quantitatively the performance of this

algorithm, the drops are divided into four groups according to

their presence in the initial configuration and their detection

by the algorithm:

- The true positive drops (TP ) which are detected by the

algorithm and are present in the initial image.

- The false positive drops (FP ) which are detected by the

algorithm but are not present in the initial image.

- The false negative drops (FN ) which are not detected by

the algorithm but are present in the initial image.

- The true negative drops (TN ) which are not detected by

the algorithm and are not present in the original image.

The number of drops which belong to each groups enables

to estimate the precision (PR) and the recall (RC) of the

Set Drop size FM
Regular pattern Very small 75 %

Small 49 %
Medium 84 %
Big 93 %

Quincunx Very small -
Small 5 %
Medium 71 %
Big 87 %

TABLE I
PERFORMANCE PARAMETERS OF THE ALGORITHM FOR SEVERAL IMAGE SETS

algorithm:

PR =
TP

TP + FP
, (2)

RC =
TP

TP + FN
. (3)

A high value of PR indicates that detected drops are present

in the original image and there can be other drops which are

not detected by the algorithm. On the contrary, a high value of

RC indicates that the algorithm detects almost all drops, but

it also detects some drops, which do not exist in the original

image. Thus, these both measurements suffer from a lack of

accuracy. In fact, neither FN nor FP are not preferred for an

accurate algorithm. That’s why, a more robust measurement

of the algorithm accuracy so-called F -measure (FM ) is used

[30]:

FM =
2

1/PR+ 1/RC
. (4)

In order to evaluate the F -measure of this algorithm, the

drops are manually detected in a sub-sampling of images and

are compared with those detected by means of the algorithm.

This study is led to two kinds of surfaces (grid pattern

and quincunx pattern) in order to determine the application

conditions of the algorithm. Table I shows the evolution of

the F -measure as a function of the considered image set and

the drop size.

The low values obtained for small drops can be explained

by the fact that drops are not really circular because they

are adjacent to pillars. Despite these mis-measurements, Table

I shows that this algorithm is very accurate, especially for
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(a) Original image (b) Thresholding

(c) Low gradient parts

(d) Convex parts

(e) Drop centers (f) Watershed

Fig. 11 Algorithm for medium drops

Fig. 12 Image of big drops on a textured image

large drops. Although the detection on the quincunx pattern is

less accurate. Thus, the pillar pattern has an influence on the

algorithm accuracy.

V. APPLICATION TO TEXTURED SURFACES

The developed image processing algorithm is applied to

images generated by the experimental set-up described in

Section II. Several texturation are tested: grid pattern and

quincunx pattern.

Fig. 14 shows the evolution of the drop mean radius

during dropwise condensation for both textured surfaces. The

measurements were done every 10s in order to reduce the

computational time. As can be seen in this figure, the drops

mean radius increases to reach a steady state situation, that

follows the theory of dropwise condensation: droplets grow

and coalesce until reaching a regular pattern [5].

Fig. 15 shows the evolution of the drop number during

dropwise condensation for both of the textured surfaces. In

both cases, the drops number decreases rapidly to reach a

steady state situation, after which the number of droplets

follow a constant pattern.

The steady state situation in both radius and number of

droplets is due to coalescence phase, during which two or

more small droplets merge and form a bigger droplet. This

phenomenon leads to decrease in the total surface area covered

by the droplets, In the vacant area formed after coalescence

new small droplets can nucleate continuously. The opposite

effect of coalescence and nucleation of new small droplets on

the average size and total number of droplets will lead to an

approximately constant pattern in these two diagrams.

However, the fluctuations at the initial seconds of the

algorithm show the lack of robustness of this algorithm in

initial stages of dropwise condensation.

The comparison between droplets radius and density

between two kinds of texturation reveals that, the drops mean

radius for the quinqunx pattern is lower than the one for

the grid pattern. In parallel, the initial droplets density for

the grid pattern is higher than quinqunx pattern. While for

both texturations, these measurements reach the same values

at steady state: 0.25mft for the mean radius and 301/ft2.

Figs. 16 and 17 compare the drop characteristics of the grid

patterned surface with a flat surface formed with the same

material in order to see the influence of pillars on the drop

evolution. According to Fig. 16, the presence of the pillars

limits the increasing of drop radius at steady state of about

50%. However, during other steps, droplets on the flat surface
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(a) Original image (b) Thresholding (c) Shrinking (d) Low gradient parts (e) Gradient histogram

(f) Dilatation & Overlaying (g) Reconstruction (h) Watershed

Fig. 13 Algorithm for big drops

Fig. 14 Evolution of the mean radius as a function of time for two kinds of
texturation

Fig. 15 Evolution of the drops number as a function of time for two kinds
of texturation

are respectively larger. On the other hand, the presence of

pillars increases considerably the drops number during the

initial steps.

Fig. 16 Comparison of the mean radius evolution for a grid patterned
surface and a flat surface

Fig. 17 Comparison of the drop number evolution for a grid patterned
surface and a flat surface

VI. CONCLUSION

A robust image processing algorithm has been developed

for drop measurement on textured surfaces. The existing

techniques of drop measurement have been discussed and have

been proved to be adequate in the case of pillar texturation
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too. Thus, the developed algorithm combines the geometrical,

optical and topological information of the images to segment

the droplets. It is capable of segmenting drops with a large

range of radius. Indeed, by means of an histogram analysis,

it can estimate the drop size, divides the drops in four main

size range and uses a corresponding algorithm adapted to each

size range. A manual verification of drop detection ability of

the present algorithm comparing to real images is conducted

to verify the algorithm accuracy. The F -measure enables to

quantify the accuracy of the detection and to show that this

algorithm has a high accuracy for drops with a radius over

0.15mft.
The developed algorithm gives the evolution of drops mean

radius and number per unit area during dropwise condensation.

It has been applied to two kinds of textured surfaces in order to

compare the wettability of each texturation. This comparison

shows that the texturation pattern affects the droplets size and

the density before steady state situation. The comparison with

flat surface shows that, although texturation enables to reduce

the droplets size at later stages, it increases the density of

initial nucleation.
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