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Abstract—Pairwise testing, which requires that every 
combination of valid values of each pair of system factors be covered 
by at lease one test case, plays an important role in software testing 
since many faults are caused by unexpected 2-way interactions among 
system factors. Although meta-heuristic strategies like simulated 
annealing can generally discover smaller pairwise test suite, they may 
cost more time to perform search, compared with greedy algorithms. 
We propose a new method, improved Extremal Optimization (EO) 
based on the Bak-Sneppen (BS) model of biological evolution, for 
constructing pairwise test suites and define fitness function according 
to the requirement of improved EO. Experimental results show that 
improved EO gives similar size of resulting pairwise test suite and 
yields an 85% reduction in solution time over SA.  

Keywords—Covering Arrays, Extremal Optimization, Simulated 
Annealing, Software Testing. 

I. INTRODUCTION

AIRWISE testing is a practical software testing approach, 
which requires that, for each pair of factors (parameters) of 

a system, every combination of valid values of these two 
factors be covered by at lease one test case [1], [2]. For instance, 
a system with three factors as shown below: factor A has values 
0 and 1, factor B has values 2 and 3, and factor C has values 4 
and 5. Four tests (rows) in Table 1 cover all pairwise 
interactions. 

Pairwise testing provides a systematic approach to identify 
and isolate faults since many faults are caused by unexpected 
2-way interactions among system factors [3]. Dalal et al. 
present empirical results that the testing of all pairwise 
interactions in a software system detects a large percentage of 
the existing faults [4]. 

If a set of tests covers all pairwise interactions, this set is 
called a pairwise test suite. Table I is an example of a pairwise 
test suite. An important problem in pairwise testing is to find as 

small pairwise test suite as possible to reduce test cost. Greedy 
algorithms [1], [2], [5]–[7] and meta-heuristic approaches [8]– 
[11] dominate the techniques for constructing pairwise test 
suites because mathematical methods can only be applied in 
some special cases. Greedy algorithms begin with an empty set 
T and add one test at a time according to some greedy policies. 
Final T is a solution. Meta-heuristic approaches start with 
individual or population test suite(s) and transform this or these 
test suite(s) according to various search strategies. Optimal 
answer may be found at last. Although meta-heuristic strategies 
generally discover better answers, they cost more time to 
perform search [8]. Extremal Optimization (EO) is a promising 
approach to reduce search cost.
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TABLE I
THE PAIRWISE COVERAGE IS ACHIEVED WITHIN THE FOUR TESTS

Test no. A B C

1 0 2 4

2 0 3 5

3 1 2 5

4 1 3 4

EO is a recently developed local search heuristic method [12] 
based on the Bak-Sneppen (BS) model of biological evolution 
[13]. The BS model demonstrates self-organized criticality, a 
tendency for systems in statistical physics to organize 
them-selves into non-equilibrium states. Unlike most 
optimization techniques, EO focuses on removing poor 
components of solutions instead of favoring the good ones. 
Moreover, instead of evolving populations, EO performs 
updates on a single solution, which is similar to Simulated 
Annealing (SA) [14]. Its performance proves competitive with, 
and often superior to, more elaborate stochastic optimization 
approaches. EO has been applied to graph partitioning, the 
traveling salesman problem, and so on [12]. However, it is not 
been applied to construct pairwise test suites to the best of our 
knowledge. 

The major contributions to this paper are summarized as 
follows: 

This paper is the first literature that EO and its 
improvement have been applied to construct pairwise test 
suites to the best of our knowledge; 
Based on the problem of constructing pairwise test suites, 
this paper presents local fitness function and global fitness 
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function, which guarantees the application of improved 
EO efficiently; 
Various experiments have been done on constructing 
pairwise test suites by adopting SA and improved EO. The 
results show that improved EO is a promising approach 
for constructing pairwise test suites. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce the mathematical model of pairwise 
test suites, main techniques to construct the test suites, base EO, 
and its improvement. In Section 3, we describe improved EO 
for constructing pairwise test suites. Section 4 provides the 
results of applying our algorithms to a collection of models. 
Section 5 concludes this paper and discusses future work.

II. BACKGROUND

Before discussing the various methods for constructing 
pairwise test suites we establish some mathematical models for 
interaction test suites. Finally base EO and its improvement are 
introduced. 

A.  Mathematical Model 
A pairwise test suite is a t-way interaction test suite where t =

2. A t-way interaction test suite is a mathematical structure, 
called a covering array. 

Definition 1  A covering array, CA(N; t, k, |v|), is an N × k
array from a set, v, of values (symbols) such that every N × t
subarray contains all tuples of size t (t-tuples) from the |v|
values at least once [8]. 

The strength of a covering array is t, which defines, for 
example, 2-way (pairwise) or 3-way interaction test suite. The k
columns of this array are called factors, where each factor has 
|v| values. In general, most software systems do not have the 
same number of values for each factor. A more general 
structure can be defined that allows variability of |v|.

Definition 2  A mixed level covering array, MCA (N; t, k,
(|v1|,|v2|,…, |vk|)), is an N × k array on |v| values, where 

, with the following properties: (1) Each 

column i (1 i k) contains only elements from a set Si of size 
|vi|. (2) The rows of each N × t subarray cover all t-tuples of 
values from the t columns at least once [8]. 

k

i i |v|v
1

||

A shorthand notation is used to describe mixed level 
covering arrays by combining entries with equally sized value 
ranges. For instance, a software system has 9 factors, 4 of 
which each take on 3 values, while the other 5 are binary. The 
pairwise test suite of this model can be written as MCA (N; 2,
3425). The symbol of k can be dropped since it can be obtained 
by adding the superscripts.  

B.  Constructing Pairwise Test Suites 
The main techniques for constructing pairwise test suites can 

be classified three categories: mathematical methods, greedy 
algorithms, and meta-heuristic strategies. Mathematical 
methods for generating pairwise test suites usually require that 
each factor has the same number of values, which restrict the 
universality of this kind of methods. The use of orthogonal 

arrays belongs to this category [15], [16]. Greedy algorithms 
start with an empty set T and add one test at a time according to 
some policies like covering the most uncovered pairs [2]. Final 
T is a solution. The representatives of greedy algorithms 
include the Automatic Efficient Test Case Generator (AETG) 
[2], the In Parameter Order (IPO) algorithm [1], [6], [7], the 
Test Case Generator (TCG) [17] and the Deterministic Density 
Algorithm (DDA) [5]. Meta-heuristic approaches begin with 
individual or population test suite(s) and transform this or these 
test suite(s) according to various search strategies. The final 
answer will be found when stopping conditions are met. This 
kind of approaches mainly includes hill climbing [8], great 
deluge algorithm [8], simulated annealing [8]–[10], tabu search 
[18] and genetic algorithms [9], [19]. In general, greedy 
algorithms run faster, while meta-heuristic strategies can 
discover better answers at higher costs [8]. 

C.  Base EO and its Improvement 
Suppose that a solution candidate S consists of some 

variables. Sbest is the best solution currently. Base EO is 
performed on S as follows [14]:  

Step 1: Generate an initial S at random, and set Sbest equal 
to S;

Step 2: Compute local fitness related to each variable of S;
Step 3: Rank the variables by their fitness and select the 

worst to be updated; 
Step 4: Select S in the neighborhood of S such that the 

worst variable must be modified; 
Step  5: Set S equal to S ;
Step 6: If global fitness of S is better than the previous 

best, Sbest, replace Sbest with S ;
Step  7: Repeat from Step 2 to Step 6 when stopping 

conditions are met. 

However, Step 3 may cause the search to become stuck in 
local optima in some cases. Therefore Boettcher and Percus 
proposed an improvement of base EO, called -EO, to deal with 
this [20]. In -EO the worst variable ranks first and the best 
variable ranks n, where n is the number of variables in the 
solution S. We select a variable ranking k to be updated 
according to a probability distribution P(k) k – , where 1 k
n, and  is a constant that determines how stochastic or 
deterministic the selection should be [19]. For higher values of 
, -EO is more likely to get stuck in local optima because it 

does without a selection function at all. With lower values of ,
-EO sometimes changes better values of a solution in order to 

explore a larger part of the search space. If  is set to zero, -EO
performs random search. Therefore -EO can jump out of 
near-optimal solutions when  is set appropriately [14]. 

III. IMPROVED EO FOR CONSTRUCTING PAIRWISE TEST SUITES

The main difficulties of applying EO to construct pairwise 
test suites are defining fitness function wisely. This section 
begins with the definitions of local and global fitness function. 
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Improved EO for constructing pairwise test suites has been 
proposed subsequently. 

A. Fitness Function 
EO can be treated as a kind of meta-heuristic approach. The 

objective of transform a test suite is to obtain a pairwise test 
suite that cover all pairwise interactions between system factors 
when meta-heuristic approaches have been applied to construct 
pairwise test suites. EO achieves this goal through changing 
every variable in a solution. In a test suite a value can be 
regarded as a variable in EO. Local fitness is the contribution of 
a value to the objective of constructing pairwise test suites. For 
a value, vi, of a factor fi in relation to an individual factor, fj, Li,j

= (ri,j / ( | vi | | vj | )) indicates the fraction of uncovered pairs 
involving vi and a value of factor fj, where ri,j is the number of 
uncovered pairs involving vi and a value of factor fj,  | vi |,              
| vj | are respective the number of values of fi, jj

1

, and i j. Local 

fitness, L(vi), for a value, vi, of a factor fi is computed as 
k

ji
j

jii LvL
1

,)( ,                             (1) 

where k is number of the factors.Global fitness, G, for a test 
suite is computed as 

n

i
ivLG )( ,                                 (2) 

where n is number of the values in this test suite. 
A test suite is a pairwise test suite when G = 0. According to 

the definition of local fitness function, it can denote the 
contribution of a value to the goal of constructing a pairwise 
test suite, which makes it possible to generate pairwise test 
suites by EO. Defining global fitness as the sum of local fitness 
also reduces the cost of computation, which improves the 
performance of EO further. Therefore it is appropriate to 
determine fitness function like this. 

B. Improved Extremal Optimization  
Improved EO for constructing pairwise test suites consists of 

two layers: outer search and inner search. Because the 
minimum size of a pairwise test suite cannot be known ahead of 
time, the outer search repeatedly calls inner search, each time 
with a different N, where N is the size of a test suite. The outer 
search chooses values for N and either accepts or rejects them 
according to the results of an inner search.

The pseudo-code of the outer search is shown in Fig.1 [11]. 
It takes an upper and lower bound on the size of the pairwise 
test suite and performs a binary search within this range. In the 
first place, at each size the inner search, improvedEO, attempts 
to build an array S  -- a test suite (line 4), and the return value is 
the last array found and its global fitness must be checked to 
determine whether it is a solution (line 5). In the second place, 
the outer search is responsible for returning the smallest 
pairwise test suite constructed, so it must keep a copy of the 
best solution (line 6). 

   binarySearch (lower, upper, t, k, v)

1 S = 

2 N = floor (( lower + upper) / 2 ) 

3   while upper lower do 

4 S  = improvedEO (N, t, k, v)

5         if S [global fitness] = 0 then 

6 S = S

7 upper = N  1 

8         else 

9 lower = N + 1 

10       end if

11 N = floor (( lower + upper) / 2 ) 

12  end while 

13  return S

Fig. 1  Pseudo-code for outer search 

The pseudo-code for the inner search, improvedEO, is 
shown in Fig.2. The inner search starts with an initial array S
(line 1) and assigns S to Sbest (line 2). Each value in S is then 
computed and ranks by its local fitness (line 4-5), and the mth 
value is selected according to a probability distribution 
P(m) m – (line 6), where the value of  is determined in next 
section. Subsequently an array S  in the neighborhood of S is 
discovered such that the selected value must be updated (line 7) 
and S is assigned to S (line 8). Set Sbest equal to S  when global 
fitness of S is smaller than that of Sbest (line 9). The iterations 
continue until a stabilization criterion is met (line 3); that is, the 
algorithm has found a solution or seems not to be making 
further progress. Finally the array Sbest is returned (line 11). S
[global fitness] stores global fitness of S, which avoid repeating 
the calculation of its global fitness in outer search. 

IV. EXPERIMENT

Having presented two research questions, we then describe 
experiments aimed to answer each research question. Results, 
analysis, and threats to validity follow. 

A. Research Questions  
It is shown that some meta-heuristic search like Simulated 

Annealing (SA) can generate smaller pairwise test suite [8], 
[10]. Furthermore, the structure of improved EO algorithm for 
constructing pairwise test suites is similar to that of SA for the 
same work. The first objective of experiments, hence, is to tell 
that whether the size of the pairwise test suite found by 
improved EO is competent with that discovered by SA. The 
second objective is to determine that whether the performance 
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of improved EO for constructing pairwise test suites surpasses 
that of SA for this thing, which is more important in this paper. 

Fig. 2  Pseudo-code for inner search. 

These lead to the following research questions. 
Q1: Whether is the size of the pairwise test suite found by 

improved EO competent with that discovered by SA? 
Q2: Whether does improved EO take less time to find the 

smallest pairwise test suite than SA? 

B. Results and Analysis 
We have implemented improved EO for generating pairwise 

test suites. Moreover, the program of SA for dealing with the 
same work has been implemented. A distinct integer starting 
with zero is assigned to each value of factors, which is seen in 
the example in Table 1. Both programs use the same data 
structure to store an integer (a rank) to represent a t-set, where t
is 2, which is a standard combinatorial technique and provide a 
general way to represent t-sets with any strength t [21]. 
Supposing that the factor, fi, has the largest number, | vi |, of 
values, the initial lower bound is the product of t and    | vi |. The 
initial upper bound is five times the | vi |t. The inner search is 
terminated after 10000 iterations. 

In simulated annealing a worse solution S  is accepted with 
probability e(g( S ) g( S ) ) / T , where T is the controlling 
temperature of the simulation, S is the old solution, and g(S)
represents global fitness of a solution S. The temperature is 
lowed by a decrement value when the algorithm performs. With 
the temperature decreasing, the probability of accepting a 

worse solution drops. Allowing a bad move, which accepts a 
worse solution, helps to keep the solution from being stuck in 
local optima and to search larger space. The algorithm stops 
when a feasible solution is found, whose global fitness is zero, 
or the current solution can not be improved further. We use an 
initial temperature of 0.5 that decreases by 0.001% every 
iteration. 

In improved EO we use  = 1 + 1/ln (n) and P(m) = ((  - 1)/(1 
– n1 - ))m – , where n is number of the values in a test suite [22], 
[23]. When more than one value has the same local fitness, they 
rank lexicographically for value tie-breaking. Both programs 
are written in C+ + and run on Windows XP using an INTEL 
Pentium Dual-Core 1.73 GHZ processor with 1GB of memory. 
The results, shown in Table 2, are average of 10 runs. Our 
experiments perform on data come from [7], [17]. 

The results listed in Table II can address two research 
questions proposed in this paper. For one thing, the smallest 
size of pairwise test suite found by both SA and improved EO is 
similar, which answers Q1, that is, the capability of improved 
EO for discovering the smallest size of pairwise test suite is 
competent with SA. 

TABLE II
COMPARISONS OF EXPERIMENTAL RESULTS BETWEEN SA AND 

IMPROVED EO 

For another, improved EO yields an 85% reduction in run 
time over SA. The principles of SA and improved EO can 
account for this great difference. In contrast to SA, which only 
considers the macroscopic behavior of computational systems 
(i.e. global fitness function), and does not study the micro 
mechanism of solution, improved EO simulates a complex 
multi-particle system in statistical physics. Both the collective 
behavior and the individual states of particles are considered 
simultaneously during improved EO. Therefore it is not 

Minimum tests in 
test suite 

Run time in 
seconds

SA Improved
EO 

SA Improved
EO 

CA(N; 2, 4, 3)   9         9     23 11 

CA(N; 2, 100, 4)                       46       45   811       102 

CA(N; 2, 13, 3) 19       20 147 29

MCA(N; 2, 415317229) 32       31 223 38

MCA(N; 2, 41339235) 22       24 190 34

MCA(N; 2, 513822) 18       19 121 22

MCA(N; 2, 716151453823) 41       37 354 47

MCA(N; 2, 514431125) 23       23 182 25

MCA(N; 2, 6151463823) 33       34 267 31

Sum  243 242 2318 339

improvedEO (N, t, k, v)

1 S = initialState (N, t, k, v)

2 Sbest = S

3   until stabilized ( S [global fitness]) do 

4           compute the local fitness for each value of S

5        rank values as v1 , v2 , …,  vm , … , vn , such that L(v1)

L(v2)  … L(vm)  … L(vn), where n is 

number of the values in S

6          select a value ranking k to be updated according to a 

probability distribution P(m) m– ,

supposing that the value selected is vm

7          find S  in the neighborhood of S such that vm must be 

modified

8 S = S

9          if   S [global fitness] < Sbest [global fitness]  then Sbest

= S

10  end until 

11  return Sbest
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surprising that improved EO outperform SA for generating 
pairwise test suites a lot, which also answers Q2. 

C.  Threats to Validity 
There are mainly three kinds of threats to our findings: 

external, internal and construct validity. 
Threats to external validity [24] are conditions that limit the 

ability to generalize the results of our experiments. The major 
external threat in this paper is our choice of models of covering 
arrays, i.e. data from [7], [17]. We cannot guarantee that these 
models accurately represent real software systems. 

Threats to internal validity are conditions that can affect the 
dependent variables of the experiment without the researcher’s 
knowledge. There are two main threats to internal validity. 
Firstly, we may bias the results by setting poor parameters for 
some algorithms such as SA and improved EO. Secondly, 
although we have verified the results of every run, we cannot be 
completely sure that the implementations are correct 
translations from pseudo-code, nor that there are not bugs in 
these programs. 

Threats to construct validity are that we have considered 
both run time and the size of the resulting test suite, but we have 
ignored other metrics that are important in some cases. For 
instance, varieties of t-sets, i.e. different values of t, in the early 
rows are desirable if we do not expect to finish pairwise testing. 

V. CONCLUSION

Generating the smallest size test suite in the shortest time is a 
vital task in pairwise testing. A new approach for generating 
pairwise test suites has been proposed in this paper by applying 
improved EO, which is a novel search optimization method 
based on Bak-Sneppen model of biological evolution. Both 
local fitness function and global fitness function have also been 
defined in order to meet the requirement of improved EO, 
which is another contribution of this paper. Experimental 
results show that improved EO yields an 85% reduction in 
solution time and preserves the ability discovering the smallest 
size test suite, compared with SA. Therefore improved EO is a 
promising approach for pairwise testing. 

In the future we will make extensive experiments to 
demonstrate our findings and improve techniques in this paper 
further. In addition, devising new approaches for constructing 
pairwise test suites is also an important goal of our following 
work.
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