
Construct Pairwise Test Suites Based on the
Bak-Sneppen Model of Biological Evolution

Jianjun Yuan, Changjun Jiang

Abstract—Pairwise testing, which requires that every
combination of valid values of each pair of system factors be covered
by at lease one test case, plays an important role in software testing
since many faults are caused by unexpected 2-way interactions among
system factors. Although meta-heuristic strategies like simulated
annealing can generally discover smaller pairwise test suite, they may
cost more time to perform search, compared with greedy algorithms.
We propose a new method, improved Extremal Optimization (EO)
based on the Bak-Sneppen (BS) model of biological evolution, for
constructing pairwise test suites and define fitness function according
to the requirement of improved EO. Experimental results show that
improved EO gives similar size of resulting pairwise test suite and
yields an 85% reduction in solution time over SA.

Keywords—Covering Arrays, Extremal Optimization, Simulated
Annealing, Software Testing.

I. INTRODUCTION

AIRWISE testing is a practical software testing approach,
which requires that, for each pair of factors (parameters) of

a system, every combination of valid values of these two
factors be covered by at lease one test case [1], [2]. For instance,
a system with three factors as shown below: factor A has values
0 and 1, factor B has values 2 and 3, and factor C has values 4
and 5. Four tests (rows) in Table 1 cover all pairwise
interactions.

Pairwise testing provides a systematic approach to identify
and isolate faults since many faults are caused by unexpected
2-way interactions among system factors [3]. Dalal et al.
present empirical results that the testing of all pairwise
interactions in a software system detects a large percentage of
the existing faults [4].

If a set of tests covers all pairwise interactions, this set is
called a pairwise test suite. Table I is an example of a pairwise
test suite. An important problem in pairwise testing is to find as

small pairwise test suite as possible to reduce test cost. Greedy
algorithms [1], [2], [5]–[7] and meta-heuristic approaches [8]–
[11] dominate the techniques for constructing pairwise test
suites because mathematical methods can only be applied in
some special cases. Greedy algorithms begin with an empty set
T and add one test at a time according to some greedy policies.
Final T is a solution. Meta-heuristic approaches start with
individual or population test suite(s) and transform this or these
test suite(s) according to various search strategies. Optimal
answer may be found at last. Although meta-heuristic strategies
generally discover better answers, they cost more time to
perform search [8]. Extremal Optimization (EO) is a promising
approach to reduce search cost.

This research was partially supported by the National Natural Science
Foundation of China (60534060, 90718012, and 90818023), the National
High-Tech Research and Development Plan (863) of China (2007AA01Z136,
2007AA01Z149, and 2009AA01Z401), and Shanghai Science and Technology
Research Plan (07JC14016).

Jianjun Yuan is with Department of Computer Science and Technology, The
Key Laboratory of “Embedded System and Service Computing” Ministry of
Education of China, Tongji University, Shanghai, 201804, P.R.China (phone:
+86-15821050499; e-mail: yjj802401@gmail.com).

Changjun Jiang is with Department of Computer Science and Technology,
The Key Laboratory of “Embedded System and Service Computing” Ministry
of Education of China, Tongji University, Shanghai, 201804, P.R.China
(e-mail: cjjiang@online.sh.cn).

TABLE I
THE PAIRWISE COVERAGE IS ACHIEVED WITHIN THE FOUR TESTS

Test no. A B C

1 0 2 4

2 0 3 5

3 1 2 5

4 1 3 4

EO is a recently developed local search heuristic method [12]
based on the Bak-Sneppen (BS) model of biological evolution
[13]. The BS model demonstrates self-organized criticality, a
tendency for systems in statistical physics to organize
them-selves into non-equilibrium states. Unlike most
optimization techniques, EO focuses on removing poor
components of solutions instead of favoring the good ones.
Moreover, instead of evolving populations, EO performs
updates on a single solution, which is similar to Simulated
Annealing (SA) [14]. Its performance proves competitive with,
and often superior to, more elaborate stochastic optimization
approaches. EO has been applied to graph partitioning, the
traveling salesman problem, and so on [12]. However, it is not
been applied to construct pairwise test suites to the best of our
knowledge.

The major contributions to this paper are summarized as
follows:

This paper is the first literature that EO and its
improvement have been applied to construct pairwise test
suites to the best of our knowledge;
Based on the problem of constructing pairwise test suites,
this paper presents local fitness function and global fitness

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:11, 2009

2725International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

11
, 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

70
4.

pd
f

function, which guarantees the application of improved
EO efficiently;
Various experiments have been done on constructing
pairwise test suites by adopting SA and improved EO. The
results show that improved EO is a promising approach
for constructing pairwise test suites.

The remainder of this paper is organized as follows. In
Section 2, we introduce the mathematical model of pairwise
test suites, main techniques to construct the test suites, base EO,
and its improvement. In Section 3, we describe improved EO
for constructing pairwise test suites. Section 4 provides the
results of applying our algorithms to a collection of models.
Section 5 concludes this paper and discusses future work.

II. BACKGROUND

Before discussing the various methods for constructing
pairwise test suites we establish some mathematical models for
interaction test suites. Finally base EO and its improvement are
introduced.

A. Mathematical Model
A pairwise test suite is a t-way interaction test suite where t =

2. A t-way interaction test suite is a mathematical structure,
called a covering array.

Definition 1 A covering array, CA(N; t, k, |v|), is an N × k
array from a set, v, of values (symbols) such that every N × t
subarray contains all tuples of size t (t-tuples) from the |v|
values at least once [8].

The strength of a covering array is t, which defines, for
example, 2-way (pairwise) or 3-way interaction test suite. The k
columns of this array are called factors, where each factor has
|v| values. In general, most software systems do not have the
same number of values for each factor. A more general
structure can be defined that allows variability of |v|.

Definition 2 A mixed level covering array, MCA (N; t, k,
(|v1|,|v2|,…, |vk|)), is an N × k array on |v| values, where

, with the following properties: (1) Each

column i (1 i k) contains only elements from a set Si of size
|vi|. (2) The rows of each N × t subarray cover all t-tuples of
values from the t columns at least once [8].

k

i i |v|v
1

||

A shorthand notation is used to describe mixed level
covering arrays by combining entries with equally sized value
ranges. For instance, a software system has 9 factors, 4 of
which each take on 3 values, while the other 5 are binary. The
pairwise test suite of this model can be written as MCA (N; 2,
3425). The symbol of k can be dropped since it can be obtained
by adding the superscripts.

B. Constructing Pairwise Test Suites
The main techniques for constructing pairwise test suites can

be classified three categories: mathematical methods, greedy
algorithms, and meta-heuristic strategies. Mathematical
methods for generating pairwise test suites usually require that
each factor has the same number of values, which restrict the
universality of this kind of methods. The use of orthogonal

arrays belongs to this category [15], [16]. Greedy algorithms
start with an empty set T and add one test at a time according to
some policies like covering the most uncovered pairs [2]. Final
T is a solution. The representatives of greedy algorithms
include the Automatic Efficient Test Case Generator (AETG)
[2], the In Parameter Order (IPO) algorithm [1], [6], [7], the
Test Case Generator (TCG) [17] and the Deterministic Density
Algorithm (DDA) [5]. Meta-heuristic approaches begin with
individual or population test suite(s) and transform this or these
test suite(s) according to various search strategies. The final
answer will be found when stopping conditions are met. This
kind of approaches mainly includes hill climbing [8], great
deluge algorithm [8], simulated annealing [8]–[10], tabu search
[18] and genetic algorithms [9], [19]. In general, greedy
algorithms run faster, while meta-heuristic strategies can
discover better answers at higher costs [8].

C. Base EO and its Improvement
Suppose that a solution candidate S consists of some

variables. Sbest is the best solution currently. Base EO is
performed on S as follows [14]:

Step 1: Generate an initial S at random, and set Sbest equal
to S;

Step 2: Compute local fitness related to each variable of S;
Step 3: Rank the variables by their fitness and select the

worst to be updated;
Step 4: Select S in the neighborhood of S such that the

worst variable must be modified;
Step 5: Set S equal to S ;
Step 6: If global fitness of S is better than the previous

best, Sbest, replace Sbest with S ;
Step 7: Repeat from Step 2 to Step 6 when stopping

conditions are met.

However, Step 3 may cause the search to become stuck in
local optima in some cases. Therefore Boettcher and Percus
proposed an improvement of base EO, called -EO, to deal with
this [20]. In -EO the worst variable ranks first and the best
variable ranks n, where n is the number of variables in the
solution S. We select a variable ranking k to be updated
according to a probability distribution P(k) k – , where 1 k
n, and is a constant that determines how stochastic or
deterministic the selection should be [19]. For higher values of
, -EO is more likely to get stuck in local optima because it

does without a selection function at all. With lower values of ,
-EO sometimes changes better values of a solution in order to

explore a larger part of the search space. If is set to zero, -EO
performs random search. Therefore -EO can jump out of
near-optimal solutions when is set appropriately [14].

III. IMPROVED EO FOR CONSTRUCTING PAIRWISE TEST SUITES

The main difficulties of applying EO to construct pairwise
test suites are defining fitness function wisely. This section
begins with the definitions of local and global fitness function.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:11, 2009

2726International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

11
, 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

70
4.

pd
f

Improved EO for constructing pairwise test suites has been
proposed subsequently.

A. Fitness Function
EO can be treated as a kind of meta-heuristic approach. The

objective of transform a test suite is to obtain a pairwise test
suite that cover all pairwise interactions between system factors
when meta-heuristic approaches have been applied to construct
pairwise test suites. EO achieves this goal through changing
every variable in a solution. In a test suite a value can be
regarded as a variable in EO. Local fitness is the contribution of
a value to the objective of constructing pairwise test suites. For
a value, vi, of a factor fi in relation to an individual factor, fj, Li,j

= (ri,j / (| vi | | vj |)) indicates the fraction of uncovered pairs
involving vi and a value of factor fj, where ri,j is the number of
uncovered pairs involving vi and a value of factor fj, | vi |,
| vj | are respective the number of values of fi, jj

1

, and i j. Local

fitness, L(vi), for a value, vi, of a factor fi is computed as
k

ji
j

jii LvL
1

,)(, (1)

where k is number of the factors.Global fitness, G, for a test
suite is computed as

n

i
ivLG)(, (2)

where n is number of the values in this test suite.
A test suite is a pairwise test suite when G = 0. According to

the definition of local fitness function, it can denote the
contribution of a value to the goal of constructing a pairwise
test suite, which makes it possible to generate pairwise test
suites by EO. Defining global fitness as the sum of local fitness
also reduces the cost of computation, which improves the
performance of EO further. Therefore it is appropriate to
determine fitness function like this.

B. Improved Extremal Optimization
Improved EO for constructing pairwise test suites consists of

two layers: outer search and inner search. Because the
minimum size of a pairwise test suite cannot be known ahead of
time, the outer search repeatedly calls inner search, each time
with a different N, where N is the size of a test suite. The outer
search chooses values for N and either accepts or rejects them
according to the results of an inner search.

The pseudo-code of the outer search is shown in Fig.1 [11].
It takes an upper and lower bound on the size of the pairwise
test suite and performs a binary search within this range. In the
first place, at each size the inner search, improvedEO, attempts
to build an array S -- a test suite (line 4), and the return value is
the last array found and its global fitness must be checked to
determine whether it is a solution (line 5). In the second place,
the outer search is responsible for returning the smallest
pairwise test suite constructed, so it must keep a copy of the
best solution (line 6).

 binarySearch (lower, upper, t, k, v)

1 S =

2 N = floor ((lower + upper) / 2)

3 while upper lower do

4 S = improvedEO (N, t, k, v)

5 if S [global fitness] = 0 then

6 S = S

7 upper = N 1

8 else

9 lower = N + 1

10 end if

11 N = floor ((lower + upper) / 2)

12 end while

13 return S

Fig. 1 Pseudo-code for outer search

The pseudo-code for the inner search, improvedEO, is
shown in Fig.2. The inner search starts with an initial array S
(line 1) and assigns S to Sbest (line 2). Each value in S is then
computed and ranks by its local fitness (line 4-5), and the mth
value is selected according to a probability distribution
P(m) m – (line 6), where the value of is determined in next
section. Subsequently an array S in the neighborhood of S is
discovered such that the selected value must be updated (line 7)
and S is assigned to S (line 8). Set Sbest equal to S when global
fitness of S is smaller than that of Sbest (line 9). The iterations
continue until a stabilization criterion is met (line 3); that is, the
algorithm has found a solution or seems not to be making
further progress. Finally the array Sbest is returned (line 11). S
[global fitness] stores global fitness of S, which avoid repeating
the calculation of its global fitness in outer search.

IV. EXPERIMENT

Having presented two research questions, we then describe
experiments aimed to answer each research question. Results,
analysis, and threats to validity follow.

A. Research Questions
It is shown that some meta-heuristic search like Simulated

Annealing (SA) can generate smaller pairwise test suite [8],
[10]. Furthermore, the structure of improved EO algorithm for
constructing pairwise test suites is similar to that of SA for the
same work. The first objective of experiments, hence, is to tell
that whether the size of the pairwise test suite found by
improved EO is competent with that discovered by SA. The
second objective is to determine that whether the performance

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:11, 2009

2727International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

11
, 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

70
4.

pd
f

of improved EO for constructing pairwise test suites surpasses
that of SA for this thing, which is more important in this paper.

Fig. 2 Pseudo-code for inner search.

These lead to the following research questions.
Q1: Whether is the size of the pairwise test suite found by

improved EO competent with that discovered by SA?
Q2: Whether does improved EO take less time to find the

smallest pairwise test suite than SA?

B. Results and Analysis
We have implemented improved EO for generating pairwise

test suites. Moreover, the program of SA for dealing with the
same work has been implemented. A distinct integer starting
with zero is assigned to each value of factors, which is seen in
the example in Table 1. Both programs use the same data
structure to store an integer (a rank) to represent a t-set, where t
is 2, which is a standard combinatorial technique and provide a
general way to represent t-sets with any strength t [21].
Supposing that the factor, fi, has the largest number, | vi |, of
values, the initial lower bound is the product of t and | vi |. The
initial upper bound is five times the | vi |t. The inner search is
terminated after 10000 iterations.

In simulated annealing a worse solution S is accepted with
probability e(g(S) g(S)) / T , where T is the controlling
temperature of the simulation, S is the old solution, and g(S)
represents global fitness of a solution S. The temperature is
lowed by a decrement value when the algorithm performs. With
the temperature decreasing, the probability of accepting a

worse solution drops. Allowing a bad move, which accepts a
worse solution, helps to keep the solution from being stuck in
local optima and to search larger space. The algorithm stops
when a feasible solution is found, whose global fitness is zero,
or the current solution can not be improved further. We use an
initial temperature of 0.5 that decreases by 0.001% every
iteration.

In improved EO we use = 1 + 1/ln (n) and P(m) = ((- 1)/(1
– n1 -))m – , where n is number of the values in a test suite [22],
[23]. When more than one value has the same local fitness, they
rank lexicographically for value tie-breaking. Both programs
are written in C+ + and run on Windows XP using an INTEL
Pentium Dual-Core 1.73 GHZ processor with 1GB of memory.
The results, shown in Table 2, are average of 10 runs. Our
experiments perform on data come from [7], [17].

The results listed in Table II can address two research
questions proposed in this paper. For one thing, the smallest
size of pairwise test suite found by both SA and improved EO is
similar, which answers Q1, that is, the capability of improved
EO for discovering the smallest size of pairwise test suite is
competent with SA.

TABLE II
COMPARISONS OF EXPERIMENTAL RESULTS BETWEEN SA AND

IMPROVED EO

For another, improved EO yields an 85% reduction in run
time over SA. The principles of SA and improved EO can
account for this great difference. In contrast to SA, which only
considers the macroscopic behavior of computational systems
(i.e. global fitness function), and does not study the micro
mechanism of solution, improved EO simulates a complex
multi-particle system in statistical physics. Both the collective
behavior and the individual states of particles are considered
simultaneously during improved EO. Therefore it is not

Minimum tests in
test suite

Run time in
seconds

SA Improved
EO

SA Improved
EO

CA(N; 2, 4, 3) 9 9 23 11

CA(N; 2, 100, 4) 46 45 811 102

CA(N; 2, 13, 3) 19 20 147 29

MCA(N; 2, 415317229) 32 31 223 38

MCA(N; 2, 41339235) 22 24 190 34

MCA(N; 2, 513822) 18 19 121 22

MCA(N; 2, 716151453823) 41 37 354 47

MCA(N; 2, 514431125) 23 23 182 25

MCA(N; 2, 6151463823) 33 34 267 31

Sum 243 242 2318 339

improvedEO (N, t, k, v)

1 S = initialState (N, t, k, v)

2 Sbest = S

3 until stabilized (S [global fitness]) do

4 compute the local fitness for each value of S

5 rank values as v1 , v2 , …, vm , … , vn , such that L(v1)

L(v2) … L(vm) … L(vn), where n is

number of the values in S

6 select a value ranking k to be updated according to a

probability distribution P(m) m– ,

supposing that the value selected is vm

7 find S in the neighborhood of S such that vm must be

modified

8 S = S

9 if S [global fitness] < Sbest [global fitness] then Sbest

= S

10 end until

11 return Sbest

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:11, 2009

2728International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

11
, 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

70
4.

pd
f

surprising that improved EO outperform SA for generating
pairwise test suites a lot, which also answers Q2.

C. Threats to Validity
There are mainly three kinds of threats to our findings:

external, internal and construct validity.
Threats to external validity [24] are conditions that limit the

ability to generalize the results of our experiments. The major
external threat in this paper is our choice of models of covering
arrays, i.e. data from [7], [17]. We cannot guarantee that these
models accurately represent real software systems.

Threats to internal validity are conditions that can affect the
dependent variables of the experiment without the researcher’s
knowledge. There are two main threats to internal validity.
Firstly, we may bias the results by setting poor parameters for
some algorithms such as SA and improved EO. Secondly,
although we have verified the results of every run, we cannot be
completely sure that the implementations are correct
translations from pseudo-code, nor that there are not bugs in
these programs.

Threats to construct validity are that we have considered
both run time and the size of the resulting test suite, but we have
ignored other metrics that are important in some cases. For
instance, varieties of t-sets, i.e. different values of t, in the early
rows are desirable if we do not expect to finish pairwise testing.

V. CONCLUSION

Generating the smallest size test suite in the shortest time is a
vital task in pairwise testing. A new approach for generating
pairwise test suites has been proposed in this paper by applying
improved EO, which is a novel search optimization method
based on Bak-Sneppen model of biological evolution. Both
local fitness function and global fitness function have also been
defined in order to meet the requirement of improved EO,
which is another contribution of this paper. Experimental
results show that improved EO yields an 85% reduction in
solution time and preserves the ability discovering the smallest
size test suite, compared with SA. Therefore improved EO is a
promising approach for pairwise testing.

In the future we will make extensive experiments to
demonstrate our findings and improve techniques in this paper
further. In addition, devising new approaches for constructing
pairwise test suites is also an important goal of our following
work.

REFERENCES

[1] K. C. Tai and Y. Lei, “A test generation strategy for pairwise testing,”
IEEE Transactions on Software Engineering, vol. 28, pp. 109-111,
January 2002.

[2] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The aetg
system: an approach to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, vol. 23, pp. 437-444, July 1997.

[3] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions
and implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, pp. 418-421, June 2004.

[4] S. R. Dalal et al. “Model-based testing in practice,” in Proceedings of the
International Conference on Software Engineering, pp. 285-294, 1999.

[5] C. J. Colbourn, M. B. Cohen, and R. C. Turban, “A deterministic density
algorithm for pairwise interaction coverage,” in Proceedings of IASTED
International Conference on Software Engineering, pp. 345-352, 2004.

[6] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG: a
general strategy for t-way software testing,” in Proceedings of IEEE
International Conference on the Engineering of Computer-Based Systems,
pp. 549-556, 2007.

[7] L. Yu and K. C. Tai, “In-parameter-order: a test generation strategy for
pairwise testing,” in Proceedings of the 3rd IEEE International
High-Assurance Systems Engineering Symposium, pp. 254-261, 1998.

[8] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn,
“Constructing test suites for interaction testing,” in Proceedings of the
25th International Conference on Software Engineering, pp. 38-48, 2003.

[9] J. Stardom, “Metaheuristics and the search for covering and packing
arrays,” Master dissertation, Department of Mathematics, Simon Fraser
University, Canada, 2001.

[10] B. Stevens, “Transversal covers and packings,” Ph.D. dissertation,
Department of Mathematics, University of Toronto, Canada, 1998.

[11] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved
meta-heuristic search for constrained interaction testing,” in Proceedings
of International Symposiumon Search-Based Software Engineering, pp.
13-22, 2009.

[12] S. Boettcher and A. G. Percus, “Extremal optimization: methods derived
from co-evolution,” in Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 825-832, 1999.

[13] P. Bak and K. Sneppen, “Punctuated equilibrium and criticality in a
simple model of evolution,” Physical Review Letters, Vol. 71, pp.
4083-4086, December 1993.

[14] M. Martin, E. Drucker, and W. D. Potter, “Genetic algorithm, extremal
optimization, and particle swarm optimization applied to the discrete
network configuration problem,” in Proceedings of International
Conference on Genetic and Evolutionary Methods, pp. 129-134, 2008.

[15] R. Brownlie, J. Prowse, and M. S. Padke, “Robust testing of AT&T
PMX/StarMAIL using OATS,” AT&T Technical Journal, vol. 71, pp.
41-47, May 1992.

[16] R. Mandl, “Orthogonal latin squares: an application of experiment design
to compiler testing,” Communications of the ACM, vol. 28, pp. 1054-1058,
October 1985.

[17] T. W. Tung and W. S. Aldiwan, “Automating test case generation for the
new generation mission software system,” in Proceedings of IEEE
Aerospace Conference, pp. 431-437, 2000.

[18] K. Nurmela, “Upper bounds for covering arrays by tabu search,” Discrete
Applied Mathematics, vol. 138, pp. 143-152, March 2004.

[19] S. A. Ghazi and M. A. Ahmed, “Pair-wise test coverage using genetic
algorithms,” in Proceedings of Congress on Evolutionary Computation,
pp. 1420-1424, 2003.

[20] S. Boettcher and A. G. Percus, “Extremal optimization for graph
partitioning,” Physical Review E, vol. 64, pp. 1-13, July 2001.

[21] M. B. Cohen, “Designing test suites for software interaction testing,”
Ph.D. dissertation, Department of Computer Science, The University of
Auckland, New Zealand, 2004.

[22] S. Boettcher and A. G. Percus, “Optimizing through co-evolutionary
avalanches,” Lecture Notes in Computer Science, vol. 1917, pp. 447-456,
2000.

[23] S Boettcher and M. Grigni, “Jamming model for the extremal
optimization heuristic,” Journal of Physics A-Mathematical and General,
vol. 35, pp. 1109-1123, January 2002.

[24] C. Wohlin et al., Experimentation in software engineering: an
introduction, Kluwer Academic Publishers, Norwell, MA, USA, 2000.

Jianjun Yuan received the B.S. degree in 1998 from Hubei University,
China, and the M.S. degree in 2005 from Huazhong University of Science &
Technology, China, both in computer science and engineering. He is currently
pursuing the Ph.D. degree in the Department of Computer Science and
Technology at Tongji University, China. His research interests include software
testing and evolutionary computing.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:11, 2009

2729International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

11
, 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

70
4.

pd
f

Changjun Jiang received the Ph.D. degree from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in 1995 and conducted
post-doctoral research at the Institute of Computing Technology, Chinese
Academy of Sciences, in 1997. He is a Professor with the Department of
Computer Science and Technology, Tongji University, Shanghai, China. He
has taken in over 20 projects supported by National Natural Science Foundation,
National Key Technologies R&D Program, National Key Basic Research
Developing Program, and other key projects at provincial or ministerial levels.
He has published more than 100 papers in domestic and international academic
journals and conference proceedings, including IEEE Transactions on System,
Man and Cybernetics, Information Sciences and so on. Furthermore, he has
published four books (supported by Science Publishing Foundation of the
Chinese Academy of Science). His current areas of research are concurrent
theory, Petri net, and formal verification of software. He has also been engaged
in research of software engineering.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:11, 2009

2730International Scholarly and Scientific Research & Innovation 3(11) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

11
, 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

70
4.

pd
f

