Search results for: high dynamic range
8486 Response of Pavement under Temperature and Vehicle Coupled Loading
Authors: Yang Zhong, Mei-jie Xu
Abstract:
To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. So the dynamic change of parameter in asphalt mixture should be taken into consideration when theoretical analysis is taken out.Keywords: Asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16628485 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range
Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini
Abstract:
This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.Keywords: Battery, electric vehicles EV, ultra-capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11178484 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations
Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung
Abstract:
This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.Keywords: Floating bridge, elastic dynamic response, coupled dynamics, mooring line, pontoon, wave/wind excitation, resonance, second-order effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5448483 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities
Authors: Lovorka Galetic, Zeljko Vukelic
Abstract:
The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company.Keywords: Dynamic capabilities, innovation capabilities, competitive advantage, business results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14288482 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall
Authors: Snehal R. Pathak, Sachin S. Munnoli
Abstract:
Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.Keywords: Earth pressure, earthquake, 2-DOF model, plaxis, wall movement, retaining walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15178481 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites
Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky
Abstract:
In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.
Keywords: Differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18388480 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: Finite-discrete element method, dry stone masonry structures, static load, dynamic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16178479 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.
Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27568478 A 24-Bit, 8.1-MS/s D/A Converter for Audio Baseband Channel Applications
Authors: N. Ben Ameur, M. Loulou
Abstract:
This paper study the high-level modelling and design of delta-sigma (ΔΣ) noise shapers for audio Digital-to-Analog Converter (DAC) so as to eliminate the in-band Signal-to-Noise- Ratio (SNR) degradation that accompany one channel mismatch in audio signal. The converter combines a cascaded digital signal interpolation, a noise-shaping single loop delta-sigma modulator with a 5-bit quantizer resolution in the final stage. To reduce sensitivity of Digital-to-Analog Converter (DAC) nonlinearities of the last stage, a high pass second order Data Weighted Averaging (R2DWA) is introduced. This paper presents a MATLAB description modelling approach of the proposed DAC architecture with low distortion and swing suppression integrator designs. The ΔΣ Modulator design can be configured as a 3rd-order and allows 24-bit PCM at sampling rate of 64 kHz for Digital Video Disc (DVD) audio application. The modeling approach provides 139.38 dB of dynamic range for a 32 kHz signal band at -1.6 dBFS input signal level.Keywords: DVD-audio, DAC, Interpolator and Interpolation Filter, Single-Loop ΔΣ Modulation, R2DWA, Clock Jitter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26228477 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth
Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson
Abstract:
Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.
Keywords: Dynamic accessibility, space-time continuum, transport research, TomTom® API.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10838476 Performance Evaluation of Routing Protocols For High Density Ad Hoc Networks based on Qos by GlomoSim Simulator
Abstract:
Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR) , Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing(LAR1).The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.Keywords: Ad hoc Network , Glomosim , routing protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16188475 Sliding-Mode Control of Synchronous Reluctance Motor
Authors: Mostafa.A. Fellani, Dawo.E. Abaid
Abstract:
This paper presents a controller design technique for Synchronous Reluctance Motor to improve its dynamic performance with fast response and high accuracy. The sliding mode control is the most attractive and suitable method to use for this purpose, since it is simple in design and for its insensitivity to parameter variations or external disturbances. When this method implemented it yields fast dynamic response without overshoot and a zero steady-state error. The current loop control with decentralized sliding mode is presented in this paper. The mathematical model for the synchronous machine, the inverter and the controller is developed. The stability of the sliding mode controller is analyzed. Simulation of synchronous reluctance motor and the controller with PWM-inverter has been curried out, using the SIMULINK software package of MATLAB. Simulation results are presented to show the effectiveness of the approach.Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sliding-mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31058474 Hardware Centric Machine Vision for High Precision Center of Gravity Calculation
Authors: Xin Cheng, Benny Thörnberg, Abdul Waheed Malik, Najeem Lawal
Abstract:
We present a hardware oriented method for real-time measurements of object-s position in video. The targeted application area is light spots used as references for robotic navigation. Different algorithms for dynamic thresholding are explored in combination with component labeling and Center Of Gravity (COG) for highest possible precision versus Signal-to-Noise Ratio (SNR). This method was developed with a low hardware cost in focus having only one convolution operation required for preprocessing of data.Keywords: Dynamic thresholding, segmentation, position measurement, sub-pixel precision, center of gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23528473 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge
Authors: Fan Yang, Ye-lu Wang, Yang Zhao
Abstract:
The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.
Keywords: Continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3618472 Assessment of Collapse Potential of Degrading SDOF Systems
Authors: Muzaffer Borekci, Murat S. Kirçil
Abstract:
Predicting the collapse potential of a structure during earthquakes is an important issue in earthquake engineering. Many researchers proposed different methods to assess the collapse potential of structures under the effect of strong ground motions. However most of them did not consider degradation and softening effect in hysteretic behavior. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. An equation was proposed for the estimation of collapse period of SDOF system which is a limit value of period for dynamic instability. If period of the considered SDOF system is shorter than the collapse period then the relevant system exhibits dynamic instability and collapse occurs.
Keywords: Collapse, degradation, dynamic instability, seismic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20978471 An Agent Based Dynamic Resource Scheduling Model with FCFS-Job Grouping Strategy in Grid Computing
Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan, Utpal Chandra Dey
Abstract:
Grid computing is a group of clusters connected over high-speed networks that involves coordinating and sharing computational power, data storage and network resources operating across dynamic and geographically dispersed locations. Resource management and job scheduling are critical tasks in grid computing. Resource selection becomes challenging due to heterogeneity and dynamic availability of resources. Job scheduling is a NP-complete problem and different heuristics may be used to reach an optimal or near optimal solution. This paper proposes a model for resource and job scheduling in dynamic grid environment. The main focus is to maximize the resource utilization and minimize processing time of jobs. Grid resource selection strategy is based on Max Heap Tree (MHT) that best suits for large scale application and root node of MHT is selected for job submission. Job grouping concept is used to maximize resource utilization for scheduling of jobs in grid computing. Proposed resource selection model and job grouping concept are used to enhance scalability, robustness, efficiency and load balancing ability of the grid.Keywords: Agent, Grid Computing, Job Grouping, Max Heap Tree (MHT), Resource Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20898470 A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings
Authors: Rosemarie Velik, Dietmar Bruckner
Abstract:
Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.Keywords: building automation, biomimetrics, dynamic scene interpretation, human-like perception, neuro-symbolic networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16168469 An Analysis of Dynamic Economic Dispatch Using Search Space Reduction Based Gravitational Search Algorithm
Authors: K. C. Meher, R. K. Swain, C. K. Chanda
Abstract:
This paper presents the performance analysis of dynamic search space reduction (DSR) based gravitational search algorithm (GSA) to solve dynamic economic dispatch of thermal generating units with valve point effects. Dynamic economic dispatch basically dictates the best setting of generator units with anticipated load demand over a definite period of time. In this paper, the presented technique is considered that deals an inequality constraints treatment mechanism known as DSR strategy to accelerate the optimization process. The presented method is demonstrated through five-unit test systems to verify its effectiveness and robustness. The simulation results are compared with other existing evolutionary methods reported in the literature. It is intuited from the comparison that the fuel cost and other performances of the presented approach yield fruitful results with marginal value of simulation time.Keywords: Dynamic economic dispatch, dynamic search space reduction strategy, gravitational search algorithm, ramp rate limits, valve-point effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14958468 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13068467 Reliable Damping Measurements of Solid Beams with Special Focus on the Boundary Conditions and Non-Contact Test Set-Ups
Authors: Ferhat Kadioglu, Ahmet Reha Gunay
Abstract:
Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. To get clear idea about the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained.
Keywords: Vibrating beam technique, dynamic values, damping, boundary conditions, non-contact measuring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948466 Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton
Authors: Tawakal Hasnain Baluch, Adnan Masood, Javaid Iqbal, Umer Izhar, Umar Shahbaz Khan
Abstract:
This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.Keywords: Dynamic Analysis, Exoskeleton, Kinematic Analysis, Lower Limb, Rehabilitation Robotics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45968465 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS
Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao
Abstract:
The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.
Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21568464 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping
Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah
Abstract:
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.
Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23908463 Dynamic Behavior of the Nanostructure of Load-bearing Biological Materials
Authors: M. Qwamizadeh, K. Zhou, Z. Zhang, YW. Zhang
Abstract:
Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.Keywords: Load-bearing biological materials, nanostructure, staggered structure, stress wave decay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20808462 Dynamics Characterizations of Dielectric Electro-Active Polymer Pull Actuator for Vibration Control
Authors: A. M. Wahab, E. Rustighi
Abstract:
Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.
Keywords: Dielectric Electro-active Polymer, Pull Actuator, Static, Dynamic, Electromechanical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21068461 Dynamic Model of Automatic Loom on SimulationX
Authors: A. Jomartov, A. Tuleshov, B. Tultaev
Abstract:
One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.Keywords: Automatic loom, dynamics, model, multibody, SimulationX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14948460 Reasoning with Dynamic Domains and Computer Security
Authors: Yun Bai
Abstract:
Representing objects in a dynamic domain is essential in commonsense reasoning under some circumstances. Classical logics and their nonmonotonic consequences, however, are usually not able to deal with reasoning with dynamic domains due to the fact that every constant in the logical language denotes some existing object in the static domain. In this paper, we explore a logical formalization which allows us to represent nonexisting objects in commonsense reasoning. A formal system named N-theory is proposed for this purpose and its possible application in computer security is briefly discussed.Keywords: knowledge representation and reasoning, commonsensereasoning, computer security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14428459 Finite Element Dynamic Analysis of Composite Structure Cracks
Authors: Omid A. Zargar
Abstract:
Material damages dynamic analysis is difficult to deal with different material geometry and mechanism. In addition, it is difficult to measure the dynamic behavior of cracks, debond and delamination inside the material. Different simulation methods are developed in recent years for different physical features of mechanical systems like vibration and acoustic. Nonlinear fractures are analyzed and identified for different locations in this paper. The main idea of this work is to perform dynamic analysis on different types of materials (from normal homogeneous material to complex composite laminates). Technical factors like cracks, voids, interfaces and the damages’ locations are evaluated. In this project the modal analysis is performed on different types of materials. The results could be helpful in finding modal frequencies, natural frequencies, Time domain and fast Fourier transform (FFT) in industrial applications.
Keywords: Finite element method, dynamic analysis, vibration and acoustic, composite, crack, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36548458 Design, Fabrication and Evaluation of MR Damper
Authors: A. Ashfak, A. Saheed, K. K. Abdul Rasheed, J. Abdul Jaleel
Abstract:
This paper presents the design, fabrication and evaluation of magneto-rheological damper. Semi-active control devices have received significant attention in recent years because they offer the adaptability of active control devices without requiring the associated large power sources. Magneto-Rheological (MR) dampers are semi- active control devices that use MR fluids to produce controllable dampers. They potentially offer highly reliable operation and can be viewed as fail-safe in that they become passive dampers if the control hardware malfunction. The advantage of MR dampers over conventional dampers are that they are simple in construction, compromise between high frequency isolation and natural frequency isolation, they offer semi-active control, use very little power, have very quick response, has few moving parts, have a relax tolerances and direct interfacing with electronics. Magneto- Rheological (MR) fluids are Controllable fluids belonging to the class of active materials that have the unique ability to change dynamic yield stress when acted upon by an electric or magnetic field, while maintaining viscosity relatively constant. This property can be utilized in MR damper where the damping force is changed by changing the rheological properties of the fluid magnetically. MR fluids have a dynamic yield stress over Electro-Rheological fluids (ER) and a broader operational temperature range. The objective of this papert was to study the application of an MR damper to vibration control, design the vibration damper using MR fluids, test and evaluate its performance. In this paper the Rheology and the theory behind MR fluids and their use on vibration control were studied. Then a MR vibration damper suitable for vehicle suspension was designed and fabricated using the MR fluid. The MR damper was tested using a dynamic test rig and the results were obtained in the form of force vs velocity and the force vs displacement plots. The results were encouraging and greatly inspire further research on the topic.Keywords: Magneto-rheological Fluid, MR Damper, Semiactive controller, Electro-rheological fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59558457 Effect of Impact Load on the Bond between Steel and CFRP Laminate
Authors: A. Al-Mosawe, R. Al-Mahaidi
Abstract:
Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.
Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566