Search results for: domain
750 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779749 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137748 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique
Authors: Shagufta Tabassum, V. P. Pawar
Abstract:
The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε∞) and relaxation time (τ).
Keywords: Excess parameters, relaxation time, static dielectric constant, time domain reflectometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725747 Identification of Training Topics for the Improvement of the Relevant Cognitive Skills of Technical Operators in the Railway Domain
Authors: Giulio Nisoli, Jonas Brüngger, Karin Hostettler, Nicole Stoller, Katrin Fischer
Abstract:
Technical operators in the railway domain are experts responsible for the supervisory control of the railway power grid as well as of the railway tunnels. The technical systems used to master these demanding tasks are constantly increasing in their degree of automation. It becomes therefore difficult for technical operators to maintain the control over the technical systems and the processes of their job. In particular, the operators must have the necessary experience and knowledge in dealing with a malfunction situation or unexpected event. For this reason, it is of growing importance that the skills relevant for the execution of the job are maintained and further developed beyond the basic training they receive, where they are educated in respect of technical knowledge and the work with guidelines. Training methods aimed at improving the cognitive skills needed by technical operators are still missing and must be developed. Goals of the present study were to identify which are the relevant cognitive skills of technical operators in the railway domain and to define which topics should be addressed by the training of these skills. Observational interviews were conducted in order to identify the main tasks and the organization of the work of technical operators as well as the technical systems used for the execution of their job. Based on this analysis, the most demanding tasks of technical operators could be identified and described. The cognitive skills involved in the execution of these tasks are those, which need to be trained. In order to identify and analyze these cognitive skills a cognitive task analysis (CTA) was developed. CTA specifically aims at identifying the cognitive skills that employees implement when performing their own tasks. The identified cognitive skills of technical operators were summarized and grouped in training topics. For every training topic, specific goals were defined. The goals regard the three main categories; knowledge, skills and attitude to be trained in every training topic. Based on the results of this study, it is possible to develop specific training methods to train the relevant cognitive skills of the technical operators.
Keywords: Cognitive skills, cognitive task analysis, technical operators in the railway domain, training topics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691746 Visual Hull with Imprecise Input
Authors: Peng He
Abstract:
Imprecision is a long-standing problem in CAD design and high accuracy image-based reconstruction applications. The visual hull which is the closed silhouette equivalent shape of the objects of interest is an important concept in image-based reconstruction. We extend the domain-theoretic framework, which is a robust and imprecision capturing geometric model, to analyze the imprecision in the output shape when the input vertices are given with imprecision. Under this framework, we show an efficient algorithm to generate the 2D partial visual hull which represents the exact information of the visual hull with only basic imprecision assumptions. We also show how the visual hull from polyhedra problem can be efficiently solved in the context of imprecise input.Keywords: Geometric Domain, Computer Vision, Computational Geometry, Visual Hull, Image-Based reconstruction, Imprecise Input, CAD object
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477745 Watermark Bit Rate in Diverse Signal Domains
Authors: Nedeljko Cvejic, Tapio Sepp
Abstract:
A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.
Keywords: Digital watermarking, information hiding, audio watermarking, watermark data rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628744 Towards Design of Context-Aware Sensor Grid Framework for Agriculture
Authors: Aqeel-ur-Rehman, Zubair A. Shaikh
Abstract:
This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.Keywords: Agriculture, Context-Awareness, Grid Computing, and Sensor Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575743 Knowledge Acquisition for the Construction of an Evolving Ontology: Application to Augmented Surgery
Authors: Nora Taleb, Sellami Mokhtar, Michel Simonet
Abstract:
This work concerns the evolution and the maintenance of an ontological resource in relation with the evolution of the corpus of texts from which it had been built. The knowledge forming a text corpus, especially in dynamic domains, is in continuous evolution. When a change in the corpus occurs, the domain ontology must evolve accordingly. Most methods manage ontology evolution independently from the corpus from which it is built; in addition, they treat evolution just as a process of knowledge addition, not considering other knowledge changes. We propose a methodology for managing an evolving ontology from a text corpus that evolves over time, while preserving the consistency and the persistence of this ontology. Our methodology is based on the changes made on the corpus to reflect the evolution of the considered domain - augmented surgery in our case. In this context, the results of text mining techniques, as well as the ARCHONTE method slightly modified, are used to support the evolution process.Keywords: Corpus, Evolution, Ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443742 A novel Iterative Approach for Phase Noise Cancellation in Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems
Authors: Joumana Farah, François Marx, Clovis Francis
Abstract:
The aim of this paper is to emphasize and alleviate the effect of phase noise due to imperfect local oscillators on the performances of a Multi-Carrier CDMA system. After the cancellation of Common Phase Error (CPE), an iterative approach is introduced which iteratively estimates Inter-Carrier Interference (ICI) components in the frequency domain and cancels their contribution in the time domain. Simulation are conducted in order to investigate the achievable performances for several parameters, such as the spreading factor, the modulation order, the phase noise power and the transmission Signal-to-Noise Ratio.
Keywords: Inter-carrier Interference, Multi-Carrier Code DivisionMultiple Access, Orthogonal Frequency Division Multiplexing, Phase noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555741 Similarity Measure Functions for Strategy-Based Biometrics
Authors: Roman V. Yampolskiy, Venu Govindaraju
Abstract:
Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.Keywords: Behavioral Biometrics, Euclidian Distance, Matching, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649740 Energy Performance of Buildings Due to Downscaled Seasonal Models
Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris
Abstract:
The current paper presents an extensive bottom-up framework for assessing building sector-specific vulnerability to climate change: energy supply and demand. The research focuses on the application of downscaled seasonal models for estimating energy performance of buildings in Greece. The ARW-WRF model has been set-up and suitably parameterized to produce downscaled climatological fields for Greece, forced by the output of the CFSv2 model. The outer domain, D01/Europe, included 345 x 345 cells of horizontal resolution 20 x 20 km2 and the inner domain, D02/Greece, comprised 180 x 180 cells of 5 x 5 km2 horizontal resolution. The model run has been setup for a period with a forecast horizon of 6 months, storing outputs on a six hourly basis.Keywords: Urban environment, vulnerability, climate change, energy performance, seasonal forecast models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743739 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467738 Fast Complex Valued Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically that the number of computation steps required for the presented fast complex valued time delay neural networks is less than that needed by classical time delay neural networks. Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Complex Valued Time Delay Neural Networks, Cross Correlation, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825737 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805736 Governance and Economic Growth: Evidence of Ten Asian Countries
Authors: Chiung-Ju Huang
Abstract:
This study utilizes a frequency domain approach over the period of 1996 to 2013 to examine the causal relationship between governance and economic growth in ten Asian countries, which have different levels of democracy; classified as “Free”, “Partly Free”, and “Not Free” countries. The empirical results show that there is no Granger causality running from governance to economic growth in “Not Free” countries and “Partly Free” countries with the exception of Singapore. As for “Free” countries such as South Korea and Taiwan, there is a one-way causality running from governance to economic growth. The findings of this study indicate that policy makers in South Korea, Taiwan, and Singapore could use governance index to improve their predictions of the future economic growth.Keywords: Economic growth, frequency domain, governance, Granger causality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330735 Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid
Authors: Minh Vuong Pham, Frédéric Plourde, Son Doan Kim
Abstract:
A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.
Keywords: Strip-decomposition, parallelization, fast directpoisson solver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044734 An Automated Test Setup for the Characterization of Antenna in CATR
Authors: Faisal Amin, Abdul Mueed, Xu Jiadong
Abstract:
This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970733 Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising
Authors: Mario Mastriani
Abstract:
We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.
Keywords: Bit-Plane, Boolean Orthonormalization Process, Denoising, Microarrays, Wavelets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490732 Video Classification by Partitioned Frequency Spectra of Repeating Movements
Authors: Kahraman Ayyildiz, Stefan Conrad
Abstract:
In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884731 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural Language Processing (NLP) in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.
Keywords: BERT, financial markets, Twitter, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716730 Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes
Authors: Dylan M. Copeland
Abstract:
We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.
Keywords: Boundary elements, finite elements, Helmholtz equation, Maxwell equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725729 Memory Effects in Randomly Perturbed Nematic Liquid Crystals
Authors: Amid Ranjkesh, Milan Ambrožič, Samo Kralj
Abstract:
We study the typical domain size and configuration character of a randomly perturbed system exhibiting continuous symmetry breaking. As a model system we use rod-like objects within a cubic lattice interacting via a Lebwohl–Lasher-type interaction. We describe their local direction with a headless unit director field. An example of such systems represents nematic LC or nanotubes. We further introduce impurities of concentration p, which impose the random anisotropy field-type disorder to directors. We study the domain-type pattern of molecules as a function of p, anchoring strength w between a neighboring director and impurity, temperature, history of samples. In simulations we quenched the directors either from the random or homogeneous initial configuration. Our results show that a history of system strongly influences: i) the average domain coherence length; and ii) the range of ordering in the system. In the random case the obtained order is always short ranged (SR). On the contrary, in the homogeneous case, SR is obtained only for strong enough anchoring and large enough concentration p. In other cases, the ordering is either of quasi long range (QLR) or of long range (LR). We further studied memory effects for the random initial configuration. With increasing external ordering field B either QLR or LR is realized.Keywords: Lebwohl-Lasher model, liquid crystals, disorder, memory effect, orientational order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509728 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames
Authors: H. Katkhuda
Abstract:
A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.
Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533727 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.
Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639726 A Robust Image Steganography Method Using PMM in Bit Plane Domain
Authors: Souvik Bhattacharyya, Aparajita Khan, Indradip Banerjee, Gautam Sanyal
Abstract:
Steganography is the art and science that hides the information in an appropriate cover carrier like image, text, audio and video media. In this work the authors propose a new image based steganographic method for hiding information within the complex bit planes of the image. After slicing into bit planes the cover image is analyzed to extract the most complex planes in decreasing order based on their bit plane complexity. The complexity function next determines the complex noisy blocks of the chosen bit plane and finally pixel mapping method (PMM) has been used to embed secret bits into those regions of the bit plane. The novel approach of using pixel mapping method (PMM) in bit plane domain adaptively embeds data on most complex regions of image, provides high embedding capacity, better imperceptibility and resistance to steganalysis attack.
Keywords: PMM (Pixel Mapping Method), Bit Plane, Steganography, SSIM, KL-Divergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867725 An Interactive Ontology Visualization Approach for the Networked Home Environment
Authors: Ilkka Niskanen, Jarmo Kalaoja, Julia Kantorovitch, Toni Piirainen
Abstract:
Ontologies are broadly used in the context of networked home environments. With ontologies it is possible to define and store context information, as well as to model different kinds of physical environments. Ontologies are central to networked home environments as they carry the meaning. However, ontologies and the OWL language is complex. Several ontology visualization approaches have been developed to enhance the understanding of ontologies. The domain of networked home environments sets some special requirements for the ontology visualization approach. The visualization tool presented here, visualizes ontologies in a domain-specific way. It represents effectively the physical structures and spatial relationships of networked home environments. In addition, it provides extensive interaction possibilities for editing and manipulating the visualization. The tool shortens the gap from beginner to intermediate OWL ontology reader by visualizing instances in their actual locations and making OWL ontologies more interesting and concrete, and above all easier to comprehend.Keywords: Ontologies, visualization, interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374724 The Role of Glutamine-Rich Region of Candida Albicans Tec1p in Mediating Morphological Transition and Invasive Growth
Authors: W. Abu Rayyan, A. Singh, A. M. Al-Jaafreh, W. Abu Dayyih, M. Bustami, S. Salem, N. Seder, K. Schröppel
Abstract:
Hyphal growth and the transcriptional regulation to the host environment are key issues during the pathogenesis of C. albicans. Tec1p is the C. albicans homolog of a TEA transcription factor family, which share a conserved DNA-binding TEA domain in their N-terminal. In order to define a structure-function relationship of the C. albicans Tec1p protein, we constructed several mutations on the N terminal, C terminal or in the TEA binding domain itself by homologous recombination technology. The modifications in the open reading frame of TEC1 were tested for reconstitution of the morphogenetic development of the tec1/tec1 mutant strain CaAS12. Mutation in the TEA consensus sequence did not confer transition to hyphae whereas the reconstitution of the full-length Tec1p has reconstituted hyphal development. A deletion in one of glutamine-rich regions either in the Tec1p N-terminal or the C-terminal in regions of 53-212 or 637–744 aa, respectively, did not restore morphological development in mutant CaAS12 strain. Whereas, the reconstitution with Tec1p mutants other than the glutamate-rich region has restored the morphogenetic switch. Additionally, the deletion of the glutamine-rich region has attenuated the invasive growth and the heat shock resistance of C. albicans. In conclusion, we show that a glutamine-rich region of Tec1p is essential for the hyphal development and mediating adaptation to the host environment of C. albicans.
Keywords: Candida albicans, transcription factor, TEA domain, hyphal formation, morphogenetic development, TEC1, Tet-induced.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849723 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.
Keywords: Cloud-based e-learning, e-learning, cloud computing application, smart learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232722 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition
Authors: Hazem M. El-Bakry
Abstract:
Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537721 An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis
Authors: Koji Yamanouchi, Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.Keywords: Cocktail party problem, blind Source Separation(BSS), independent component analysis, sliding DFT, onlineprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638