The Role of Glutamine-Rich Region of Candida Albicans Tec1p in Mediating Morphological Transition and Invasive Growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
The Role of Glutamine-Rich Region of Candida Albicans Tec1p in Mediating Morphological Transition and Invasive Growth

Authors: W. Abu Rayyan, A. Singh, A. M. Al-Jaafreh, W. Abu Dayyih, M. Bustami, S. Salem, N. Seder, K. Schröppel

Abstract:

Hyphal growth and the transcriptional regulation to the host environment are key issues during the pathogenesis of C. albicans. Tec1p is the C. albicans homolog of a TEA transcription factor family, which share a conserved DNA-binding TEA domain in their N-terminal. In order to define a structure-function relationship of the C. albicans Tec1p protein, we constructed several mutations on the N terminal, C terminal or in the TEA binding domain itself by homologous recombination technology. The modifications in the open reading frame of TEC1 were tested for reconstitution of the morphogenetic development of the tec1/tec1 mutant strain CaAS12. Mutation in the TEA consensus sequence did not confer transition to hyphae whereas the reconstitution of the full-length Tec1p has reconstituted hyphal development. A deletion in one of glutamine-rich regions either in the Tec1p N-terminal or the C-terminal in regions of 53-212 or 637–744 aa, respectively, did not restore morphological development in mutant CaAS12 strain. Whereas, the reconstitution with Tec1p mutants other than the glutamate-rich region has restored the morphogenetic switch. Additionally, the deletion of the glutamine-rich region has attenuated the invasive growth and the heat shock resistance of C. albicans. In conclusion, we show that a glutamine-rich region of Tec1p is essential for the hyphal development and mediating adaptation to the host environment of C. albicans.

Keywords: Candida albicans, transcription factor, TEA domain, hyphal formation, morphogenetic development, TEC1, Tet-induced.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2643898

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864

References:


[1] Freire F, de Barros PP, Pereira CA, Junqueira JC, Jorge AOC (2018) Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms. Lasers in medical science. doi:10.1007/s10103-018-2487-8.
[2] Anbanandam A, Albarado DC, Nguyen CT, Halder G, Gao X, Veeraraghavan S (2006) Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proceedings of the National Academy of Sciences of the United States of America 103 (46):17225-17230. doi:0607171103 (pii) 10.1073/pnas.0607171103.
[3] Bruckner S, Kern S, Birke R, Saugar I, Ulrich HD, Mosch HU (2011) The TEA transcription factor Tec1 links TOR and MAPK pathways to coordinate yeast development. Genetics 189 (2):479-494. doi:10.1534/genetics.111.133629.
[4] Shareck J, Nantel A, Belhumeur P (2011) Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryotic cell 10 (4):565-577. doi:10.1128/EC.00305-10.
[5] Schweizer A, Rupp S, Taylor BN, Rollinghoff M, Schroppel K (2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular microbiology 38 (3):435-445. doi:mmi2132 (pii).
[6] Chen X, Zhang R, Takada A, Iwatani S, Oka C, Kitamoto T, Kajiwara S (2017) The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans. Mycoses 60 (2):96-103.
[7] Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4 (8):461-469. doi:206 (pii).
[8] Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15 (12):1150-1155. doi:S0960-9822(05)00562-2 (pii) 10.1016/j.cub.2005.05.047.
[9] Bauer J, Kinast, S., Burger-Kentischer, A., Finkelmeier, D., Kleymann, G., Abu Rayyan, W., Schröppel, K., Singh, A., Jung, G., Rupp, S. and Eickhoff, H. (2011) HTS-Identification and SAR-characterization defined (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole as highly antimycotic non-toxic agent. Journal of Medicinal Chemistry.
[10] Kohler T, Wesche S, Taheri N, Braus GH, Mosch HU (2002) Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryotic cell 1 (5):673-686.
[11] Van der Felden J, Weisser S, Bruckner S, Lenz P, Mosch HU (2014) The transcription factors Tec1 and Ste12 interact with coregulators Msa1 and Msa2 to activate adhesion and multicellular development. Molecular and cellular biology 34 (12):2283-2293. doi:10.1128/MCB.01599-13
[12] Bruckner S, Kohler T, Braus GH, Heise B, Bolte M, Mosch HU (2004) Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Current genetics 46 (6):331-342. doi:10.1007/s00294-004-0545-1.
[13] Bauer J, Kinast S, Burger-Kentischer A, Finkelmeier D, Kleymann G, Rayyan WA, Schroppel K, Singh A, Jung G, Wiesmuller KH, Rupp S, Eickhoff H (2011) High-throughput-screening-based identification and structure-activity relationship characterization defined (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole as a highly antimycotic agent nontoxic to cell lines. J Med Chem 54 (19):6993-6997. doi:10.1021/jm200571e.
[14] Daniels KJ, Srikantha T, Pujol C, Park YN, Soll DR (2015) Role of Tec1 in the development, architecture, and integrity of sexual biofilms of Candida albicans. Eukaryotic cell 14 (3):228-240. doi:10.1128/EC.00224-14.
[15] Staib P, Binder A, Kretschmar M, Nichterlein T, Schroppel K, Morschhauser J (2004) Tec1p-independent activation of a hypha-associated Candida albicans virulence gene during infection. Infection and immunity 72 (4):2386-2389.
[16] Francois IE, Aerts AM, Cammue BP, Thevissen K (2005) Currently used antimycotics: spectrum, mode of action and resistance occurrence. Curr Drug Targets 6 (8):895-907.
[17] Okoli I, Coleman JJ, Tampakakis E, An WF, Holson E, Wagner F, Conery AL, Larkins-Ford J, Wu G, Stern A, Ausubel FM, Mylonakis E (2009) Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PloS one 4 (9):e7025. doi:10.1371/journal.pone.0007025.
[18] Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E (2009) Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryotic cell 8 (11):1750-1758. doi:EC.00163-09 (pii) 10.1128/EC.00163-09.
[19] Doak TG, Witherspoon DJ, Jahn CL, Herrick G (2003) Selection on the genes of Euplotes crassus Tec1 and Tec2 transposons: evolutionary appearance of a programmed frameshift in a Tec2 gene encoding a tyrosine family site-specific recombinase. Eukaryotic cell 2 (1):95-102.
[20] Heise B, van der Felden J, Kern S, Malcher M, Bruckner S, Mosch HU (2010) The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. Eukaryotic cell 9 (4):514-531. doi:10.1128/EC.00251-09.
[21] Hwang JJ, Chambon P, Davidson I (1993) Characterization of the transcription activation function and the DNA binding domain of transcriptional enhancer factor-1. EMBO J 12 (6):2337-2348.
[22] Lane S, Zhou S, Pan T, Dai Q, Liu H (2001) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Molecular and cellular biology 21 (19):6418-6428.
[23] Colombatti A, Bonaldo P, Doliana R (1993) Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 13 (4):297-306.
[24] Berman J, Sudbery PE (2002) Candida Albicans: a molecular revolution built on lessons from budding yeast. Nature reviews Genetics 3 (12):918-930. doi:10.1038/nrg948.
[25] Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE, Jr. (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279 (29):30480-30489. doi:10.1074/jbc.M401929200 M401929200 (pii).
[26] Sanglard D, Hube B, Monod M, Odds FC, Gow NA (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infection and immunity 65 (9):3539-3546.
[27] Biswas S, Van Dijck P, Datta A (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71 (2):348-376. doi:71/2/348 (pii) 10.1128/MMBR.00009-06.
[28] Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular and General Genetics MGG 198 (1):179-182.
[29] Sehnal (2008) Struktur und Funktion des TEA/ATTS- Transkriptionsfaktors Tec1p von Candida albicans., der Friedrich-Alexander-Universität Erlangen-Nürnberg, Pölten, Österreich.