Search results for: Particle Swarm Optimization(PSO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 735

Search results for: Particle Swarm Optimization(PSO)

585 Impact of Loading Conditions on the Emission- Economic Dispatch

Authors: M. R. Alrashidi, M. E. El-Hawary

Abstract:

Environmental awareness and the recent environmental policies have forced many electric utilities to restructure their operational practices to account for their emission impacts. One way to accomplish this is by reformulating the traditional economic dispatch problem such that emission effects are included in the mathematical model. This paper presents a Particle Swarm Optimization (PSO) algorithm to solve the Economic- Emission Dispatch problem (EED) which gained recent attention due to the deregulation of the power industry and strict environmental regulations. The problem is formulated as a multi-objective one with two competing functions, namely economic cost and emission functions, subject to different constraints. The inequality constraints considered are the generating unit capacity limits while the equality constraint is generation-demand balance. A novel equality constraint handling mechanism is proposed in this paper. PSO algorithm is tested on a 30-bus standard test system. Results obtained show that PSO algorithm has a great potential in handling multi-objective optimization problems and is capable of capturing Pareto optimal solution set under different loading conditions.

Keywords: Economic emission dispatch, economic cost dispatch, particle swarm, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
584 Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach

Authors: K. Thangavel, R. Rathipriya

Abstract:

For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.

Keywords: Biclustering, Binary Particle Swarm Optimization, Discrete Firefly Algorithm, Firefly Algorithm, Usage profile Web usage mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
583 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: GIS, Outliers, PSO, Traffic Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893
582 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
581 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design

Authors: D. Mondal, A. Chakrabarti, A. Sengupta

Abstract:

This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
580 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
579 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO

Authors: Youcef Bekakra, Djilani Ben attous

Abstract:

In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.

Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
578 A New Particle Filter Inspired by Biological Evolution: Genetic Filter

Authors: S. Park, J. Hwang, K. Rou, E. Kim

Abstract:

In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.

Keywords: Particle filter, genetic algorithm, evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
577 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
576 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
575 Application of Computational Intelligence Techniques for Economic Load Dispatch

Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
574 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
573 Dynamic Economic Dispatch Using Glowworm Swarm Optimization Technique

Authors: K. C. Meher, R. K. Swain, C. K. Chanda

Abstract:

This paper gives an intuition regarding glowworm swarm optimization (GSO) technique to solve dynamic economic dispatch (DED) problems of thermal generating units. The objective of the problem is to schedule optimal power generation of dedicated thermal units over a specific time band. In this study, Glowworm swarm optimization technique enables a swarm of agents to split into subgroup, exhibit simultaneous taxis towards each other and rendezvous at multiple optima (not necessarily equal) of a given multimodal function. The feasibility of the GSO method has been tested on ten-unit-test systems where the power balance constraints, operating limits, valve point effects, and ramp rate limits are taken into account. The results obtained by the proposed technique are compared with other heuristic techniques. The results show that GSO technique is capable of producing better results.

Keywords: Dynamic economic dispatch, Glowworm swarm optimization, Luciferin, Valve–point loading effect, Ramp rate limits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
572 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO

Authors: Rajendraprasad Narne, P. C. Panda

Abstract:

In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.

Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
571 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
570 Motion Planning and Control of a Swarm of Boids in a 3-Dimensional Space

Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract:

In this paper, we propose a solution to the motion planning and control problem for a swarm of three-dimensional boids. The swarm exhibit collective emergent behaviors within the vicinity of the workspace. The capability of biological systems to autonomously maneuver, track and pursue evasive targets in a cluttered environment is vastly superior to any engineered system. It is considered an emergent behavior arising from simple rules that are followed by individuals and may not involve any central coordination. A generalized, yet scalable algorithm for attraction to the centroid and inter-individual swarm avoidance is proposed. We present a set of new continuous time-invariant velocity control laws, formulated via the Lyapunov-based control scheme for target attraction and collision avoidance. The controllers provide a collision-free trajectory. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the control laws is demonstrated via computer simulations.

Keywords: Swarm, Practical stability, Motion planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
569 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
568 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
567 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage

Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao

Abstract:

Particles exhausted from cars have adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.

Keywords: Dispersion, Idling conditions, Particle concentration, Residential underground garage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
566 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems

Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
565 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
564 STLF Based on Optimized Neural Network Using PSO

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
563 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake

Authors: Wenlong Liu, Yucheng Liu

Abstract:

This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.

Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
562 Absorption Center of Photophoresis with in Micro-Sized and Spheroidal Particles in a Gaseous Medium

Authors: Wen-Ken Li, Pei-Yuan Tzeng, Chyi-Yeou Soong, Chung-Ho Liu

Abstract:

The present study is concerned with the absorption center of photophoresis within a micro-sized and spheroidal particle in a gaseous medium. A particle subjected to an intense light beam can absorb electromagnetic energy within the particle unevenly, which results in photophoretic force to drive the particle in motion. By evaluating the energy distribution systematically at various conditions, the study focuses on the effects of governing parameters, such as particle aspect ratio, size parameter, refractivity, and absorptivity, on the heat source function within the particle and their potential influences to the photophoresis.

Keywords: photophoresis, spheroidal particle, aspect ratio, refractivity, absorptivity, heat source function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
561 Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Yongzheng Li, Hongfang Ma, Qiwen Sun, Haitao Zhang, Weiyong Ying

Abstract:

Radial profiles of particle velocities were investigated in a 6.1m high methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The effect of axial height on flow development was not obvious in fully developed region under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons among rising, descending and average particle velocity were conducted. The particle average velocity was similar to the rising particle velocity and higher than the descending particle velocity in radial locations except the wall region of riser.

Keywords: Circulating fluidized bed, laser doppler velocimeter, particle velocity, radial profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
560 Evolutionary Program Based Approach for Manipulator Grasping Color Objects

Authors: Y. Harold Robinson, M. Rajaram, Honey Raju

Abstract:

Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.

Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
559 Self Organizing Analysis Platform for Wear Particle

Authors: Qurban A. Memon, Mohammad S. Laghari

Abstract:

Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear particle analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear particle. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.

Keywords: Neural Network, Relationship Measurement, Selforganizing Clusters, Wear Particle Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
558 Simulation of Particle Damping under Centrifugal Loads

Authors: Riaz A. Bhatti, Wang Yanrong

Abstract:

Particle damping is a technique to reduce the structural vibrations by means of placing small metallic particles inside a cavity that is attached to the structure at location of high vibration amplitudes. In this paper, we have presented an analytical model to simulate the particle damping of two dimensional transient vibrations in structure operating under high centrifugal loads. The simulation results show that this technique remains effective as long as the ratio of the dynamic acceleration of the structure to the applied centrifugal load is more than 0.1. Particle damping increases with the increase of particle to structure mass ratio. However, unlike to the case of particle damping in the absence of centrifugal loads where the damping efficiency strongly depends upon the size of the cavity, here this dependence becomes very weak. Despite the simplicity of the model, the simulation results are considerably in good agreement with the very scarce experimental data available in the literature for particle damping under centrifugal loads.

Keywords: Impact damping, particle damping, vibration control, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
557 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems

Authors: M. Senthil Arumugam, M.V.C. Rao

Abstract:

This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.

Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
556 Dependence of Particle Initiated PD Characteristics on Size and Position of Metallic Particle Adhering to the Spacer Surface in GIS

Authors: F. N. Budiman, Y. Khan, A. A. Khan, A. Beroual, N. H. Malik, A. A. Al-Arainy

Abstract:

It is well known that metallic particles reduce the reliability of Gas-Insulated Substation (GIS) equipments by initiating partial discharge (PDs) that can lead to breakdown and complete failure of GIS. This paper investigates the characteristics of PDs caused by metallic particle adhering to the solid spacer. The PD detection and measurement were carried out by using IEC 60270 method with particles of different sizes and at different positions on the spacer surface. The results show that a particle of certain size at certain position possesses a unique PD characteristic as compared to those caused by particles of different sizes and/or at different positions. Therefore PD characteristics may be useful for the particle size and position identification.

Keywords: Particle, partial discharge, GIS, spacer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616