
Abstract— This paper presents a novel two-phase hybrid 

optimization algorithm with hybrid genetic operators to solve the 

optimal control problem of a single stage hybrid manufacturing 

system.  The proposed hybrid real coded genetic algorithm 

(HRCGA)  is developed in such a way that a simple real coded GA 

acts as a base level search, which makes a quick decision to direct the 

search towards the optimal region, and a local search method is next 

employed to do fine tuning. The hybrid genetic operators involved in 

the proposed algorithm improve both the quality of the solution and 

convergence speed.  The phase–1 uses conventional real coded 

genetic algorithm (RCGA), while optimisation by direct search and 

systematic reduction of the size of search region is employed in the 

phase – 2. A typical numerical example of an optimal control 

problem with the number of jobs varying from 10 to 50 is included to 

illustrate the efficacy of the proposed algorithm. Several statistical 

analyses are done to compare the validity of the proposed algorithm 

with the conventional RCGA and PSO techniques. Hypothesis t – test 

and analysis of variance (ANOVA) test are also carried out to 

validate the effectiveness of the proposed algorithm. The results 

clearly demonstrate that the proposed algorithm not only improves 

the quality but also is more efficient in converging to the optimal 

value faster. They can outperform the conventional real coded GA 

(RCGA) and the efficient particle swarm optimisation (PSO) 

algorithm in quality of the optimal solution and also in terms of 

convergence to the actual optimum value. 

Keywords— Hybrid systems, optimal control, real coded genetic 

algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real 

coded GA (HRCGA), and Hybrid genetic operators.

I. INTRODUCTION

The hybrid systems of interest contain two different types 

of categories: subsystems with continuous dynamics and 

subsystems with discrete dynamics that interact with each 
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other.   Such   hybrid systems arise in varied contexts in 

manufacturing, communication networks, automotive engine 

design, computer synchronization, and chemical processes, 

among others. 

In hybrid manufacturing systems, the manufacturing 

process is composed of the event-driven dynamics of the parts 

moving among different machines and the time-driven 

dynamics of the processes within particular machines. 

Frequently in hybrid systems, the event-driven dynamics are 

studied separately from the time-driven dynamics, the former 

via automata or Petri net models, PLC etc., and the latter via 

differential or difference equations. Two categories of 

modeling framework have been proposed to study hybrid 

systems: those that extend event-driven models to include 

time-driven dynamics; and those that extend the traditional 

time-driven models to include event- driven dynamics. The 

hybrid system-modeling framework considered in this 

research falls into the first category. It is motivated by the 

structure of many manufacturing systems. To represent the 

hybrid nature of the model, each job is characterized by a 

physical state and a temporal state. The physical state 

represents the physical characteristics of interest and evolves 

according to the time-driven dynamics (e.g., difference or 

differential equations) while a server is processing the job. 

The temporal state represents processing arrival and 

completion times and evolves according to the discrete-event 

dynamics (e.g., queuing dynamics).  The interaction of time-

driven with event-driven dynamics leads to a natural tradeoff 

between temporal requirements on job completion times and 

physical requirements on the quality of the completed jobs 

(Fig 1). Such modeling frameworks and optimal control 

problems have been considered in [1,2]. 

Several algorithms were developed for solving such 

problems. In our earlier work, we proposed real coded genetic 

algorithms (RCGA) and particle swarm optimization (PSO) 

algorithms for solving the optimal control problems.  In 

conventional RCGA, we used roulette wheel selection, 

tournament selection and the hybrid combination of both 

methods individually. Different combinations of cross over 
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techniques with the unique differential mutation are used 

along with the hybrid selection method in order to obtain the 

quality optimal solution of the hybrid system problem.  We 

observed that, hybrid selection with hybrid cross over 

technique improves both the quality and optimal value of the 

fitness function of the control problem [3]. 

Particle swarm optimization (PSO) is one of the modern 

heuristic algorithms under the evolutionary algorithms (EA) 

and gained lots of attention in various power system 

applications [4]. It has been developed through simulation of 

simplified social models. We have analyzed the impact of 

inertia weight on the performance of PSO.  When the inertia 

weight is high (say I.W = 0.5, PSO -1), the PSO converges 

faster and yields the solution faster but the optimal solution is 

not satisfactory. But at the same time when we reduce the 

inertia weight to a lower value of 0.1 (PSO –2), the PSO 

yields a better optimal solution but the convergence of the 

solution takes little more time. In order to get a compromise 

between optimal solution and convergence rate (or execution 

time), we defined a monotonic function, which decreases the 

inertia weight (PSO –3) linearly with the number of 

generations from 0.5 to 0.1. Now the optimal value is the 

lowest among all other PSO methods. The convergence rate is 

also improved over PSO –2 and slightly higher than PSO –1. 

In this paper, we propose two-phase hybrid real coded 

genetic algorithms (HRCGA) with different forms of selection 

methods and crossover methods. The selection methods 

adopted in this paper are: Roulette wheel selection (RWS), 

Tournament selection (TS) and the hybrid combination of the 

both. The crossover operation is carried out with the hybrid 

combination of two different methods: Arithmetic crossover 

(AMXO), average crossover (ACXO), and dynamic mutation 

(DM) as a third genetic operator.  In the first phase of the 

algorithm, real coded GA works and provides the potential 

near optimum solution, and the phase-2 of a search technique 

uses optimization by direct search and systematic reduction of 

the size of the search region.  We compared our three 

proposed methods; each differs in selection method adopted, 

with that of conventional RCGA and PSO methods. 

The remaining of this paper is organized as follows:  In 

section 2, the optimal control problem of a single stage hybrid 

manufacturing system is studied and formulated. The 

functional procedures of real coded GA and PSO are briefed 

in Section 3. Section 4 depicts the design of hybrid genetic 

operators for various RCGA methods, proposed HRCGA 

methods and the parameter selection for PSO algorithms. 

Section 5 gives the algorithmic and functional procedure for 

the two-phase HRCGA.  The numerical example, the 

simulation results and the statistical analyses are given in 

section 6 and finally the discussions and conclusions are 

drawn in section 7. 

II. PROBLEM FORMULATION OF SINGLE STAGE

HYBRID MANUFACTURING SYSTEM

The hybrid system framework with event-driven and time-

driven dynamics is given in Fig 1.  

Fig 1. Hybrid Frame work with time – driven and event-driven dynamics 

The hybrid model of a single stage manufacturing hybrid 

system model is illustrated in Fig 2. A sequence of N jobs is 

assigned by an external source to arrive for processing at 

known times 0  a1  …  aN. The jobs are denoted by Ci, i = 

1, 2,…, N.  The jobs are processed on first-come first-serve 

(FCFS) basis by a work-conserving and non-preemptive 

server. The processing time is s(ui), which is a function of a 

control variable ui , and   s(ui)  0. 

Fig. 2. A single stage hybrid manufacturing system. 

A job Ci  is initially at some physical state i at time x0 and 

subsequently evolves according to the time – driven dynamics 

of the hybrid system given in Eq.(1). 

(1))(),,,()( .ioiiii xztuzgtz

The event-driven dynamics is described by recursive non-

linear equations (Max-plus equations) involving a maximum 

or a minimum operation, which is typically found in models of 

discrete event systems (DES). For the fist-come first-serve 

(FCFS), nonpreemptive, single server example in figure 2, 

these dynamics is given by the standard Lindley equation of 

the form:  

(2),....1),(),(max )1( Niusaxx iiii

where xi is the departure or completion time of ith job. 
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From equations (1) and (2), it is clear that the choice of 

control ui affects both the physical state zi and the next 

temporal state xi, and thus time-driven dynamics (1) and event-

driven dynamics (2) ,justifying the hybrid nature of the 

system. According to [1], there are two alternative ways to 

view this hybrid system. The first is as a discrete event 

queuing system with time-driven dynamics evolving during 

processing in the server as shown in Fig 3. 

Fig. 3. Typical Trajectory 

The other viewpoint interprets the model as a switched 

system. In this framework, each job must be processed until it 

reaches a certain quality level denoted by i.  That is, the 

processing time for each job is chosen such that : 

(3))(,,z;0min 00i i

tt

t

iiii tzdtugttus
o

o

Fig. 3 shows the evolution of the physical state as a 

function of time t. It is shown in the figure that the dynamics 

of the physical state experiences a “switch” when certain 

events occur. These events may be classified into two 

categories: uncontrolled (or exogenous) arrival events and 

controlled departure events. In Fig. 2, the first event is an 

exogenous arrival event at time a1. When the first job arrives 

at a1, the physical state starts to evaluate the time-driven 

dynamics until it reaches the departure time x1. Note that the 

first job completes before the second job arrives and hence 

there is an idle period, in which the server has no jobs to 

process. The physical state again begins evolving the time-

driven dynamics at time a2 (arrival of second job) until the 

second job completes at x2. Note, however, that the third job 

arrived before the second job was completed. So the third job 

is forced to wait in the queue until time x2. After the second 

job completes at x2 the physical state begins to process the 

third job. As indicated in Fig.3, not only do the arrival time 

and departure time cause switching in the time-driven 

dynamics according to (1), but also the sequence in which 

these events occur is governed by the event-driven dynamics 

given in (2). 

For the above single-stage framework defined by equations 

(1) and (2), the optimal control objective is to choose a control 

sequence {u1, , uN} to minimize an objective function of the 

form: 

)4()}()({
1

N

i

iiii xuJ

Although, in general, the state variables zi,,…..zN evolve 

continuously with time, minimizing (4) is an optimization 

problem in which the values of the state variables are 

considered only at the job completion times x1,…….xN. Since 

the stopping criterion in (3) is used to obtain the service times, 

a cost on the physical state zi(xi) is unnecessary because the 

physical state of each completed job satisfies the quality 

objectives, i.e.,  zi(xi) i .

Generally speaking, ui is a control variable affecting the 

processing time through si = s(ui) for extensions to cases with 

time-varying controls ui(t) over a service time. By assuming 

si(.) is either monotone increasing or monotone decreasing, 

given a control   ui , service time si can be determined from si

= s(ui) and vice versa. For simplicity, let si = ui and the rest of 

the analysis is carried out with the notation ui. Hence the 

optimal control problem, with  = 1, denoted by P is of the 

following form: 

(5),.....,1,0:)()(
,....,

min
:

1

i

1

N

i

iii

N

NiuxuJ
uu

P

(6),....,1),(),max( )1( Niusaxxtosubject iiii

The optimal solution of P is denoted by Niforui ,...,1* ,

and the corresponding departure time in equation (6) is 

denoted by Niforxi ,...,1* .

III.   REVIEW OF REAL CODED GA AND PARTICLE

SWARM OPTIMIZATION TECHNIQUES

The Genetic algorithm (GA) is a search technique based on 

the mechanics of natural genetics and survival of the fittest. 

GA is attractive and alternative tool for solving complex 

multi-modal optimization problems [5,6]. GA is unique as it 

operates from a rich database of many points simultaneously. 

Any carefully designed GA is only able to balance the 

exploration of the search effort, which means that an increase 

in the accuracy of a solution can only come at the sacrifice of 

convergent speed, and vice versa. It is unlikely that both of 

them can be improved simultaneously. Despite their superior 

search ability, GA still fails to meet the high expectations that 

theory predicts for the quality and efficiency of the solution. 

As widely accepted, a conventional GA (CGA) is only 

capable of identifying the high performance region at an 

affordable time and displaying inherent difficulties in 

performing local search for numerical applications [5-8]. 
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A.  REAL CODED GA: 

To improve the final local tuning capabilities of a binary 

coded genetic algorithm, which is a must for high precision 

problems, new genetic operators have been introduced [6,9]. 

The main objective behind real coded GA implementations is 

to move the genetic algorithm closer to the problem space. For 

most applications of GAs to constrained optimization 

problems, the real coding is used to represent a solution to a 

given problem. Such coding is also known as floating-point 

representation, real number representation.  

GAs start searching the solution by initialising a population 

of random candidates to the solution. Every individual in the 

population undergoes genetic evolution through crossover and 

mutation. The selection procedure is conducted based on the 

fitness of each individual. In this paper, the Roulette-wheel 

selection (RWS), Tournament selection (TS) and hybrid of 

both selection procedures are adopted in conjunction with the 

elitist strategy. By using elitist strategy, the best individual in 

each generation is ensured to be passed to the next generation.

The selection operator creates a new population by 

selecting individuals from the old populations, biased towards 

the best. The chromosomes, which produce the best optimal 

fitness, are selected for next generations. Crossover is the 

main genetic operator, which swaps chromosome parts 

between individuals. Crossover is not performed on every pair 

of individuals; its frequency being controlled by a crossover 

probability (Pc). The probability should have a larger value, 

typically, Pc = 0.8. The last operator is mutation and consists 

which changes a random part of string representing the 

individual. This operator must be used with some care, with 

low probability, typically Pm ranges from 0.01 to 0.1 for 

normal populations.  The algorithm is repeated for several 

generations until one of the individuals of population 

converges to an optimal value or the required number of 

generations (max_gen) is reached. The high level behavior of 

GA can be depicted as in Table 1.

TABLE 1.

A GENERAL GA PROCEDURE

Step 1: Start 

              Step 2: Generate (OLDPOP) 

     Step 3: Repeat until limit 

Evaluate (OLDPOP) 

NEWPOP=Select (OLDPOP) 

Crossover (NEWPOP) 

Mutation (NEWPOP) 

OLDPOP=NEWPOP

              Step 4: End 

Michaelewicz [9] indicates that for real valued numerical 

optimization problems, floating-point representations 

outperform binary representations because they are more 

consistent, more precise, and lead to faster execution. For 

most applications of GAs to optimization problems, the real 

coding technique is used to represent a solution to a given 

problem. Hence, we use GA with real values in both 

conventional and hybrid, for solving the optimal control 

problem.       

B. PARTICLE SWARM OPTIMIZATION: 

 Dr. Kennedy and Dr. Eberhart introduced particle swarm 

optimization in 1995 as an alternative to Genetic Algorithm 

(GA). The PSO technique has ever since turned out to be a 

competitor in the fields of numerical optimization. The 

evolutionary algorithms, EAs, (GA and EP) are search 

algorithms based on the simulated evolutionary process of 

natural selection, variation, and genetics. Both GA and EP can 

provide a near global solution [19]. EP differs from traditional 

GAs in two aspects: EP uses the real values, but not their 

coding as in traditional GAs, and EP relies primarily on 

mutation and selection, but not crossover, as in traditional 

GAs. Hence, considerable computation time may be saved in 

EP. Although GA and EP seem to be good methods to solve 

optimization problems, when applied to problems consisting 

of more number of local minima, the solutions obtained from 

both methods are just near global optimum ones [10]. 

PSO is similar to the other evolutionary algorithms in which 

the system is initialized with a population of random 

solutions. However, each potential solution is also assigned a 

randomized velocity, and the potential solutions 

corresponding to individuals. Generally, the PSO is 

characterized as a simple heuristic of well-balanced 

mechanism with flexibility to enhance and adapt to both 

global and local exploration abilities. It is a stochastic search 

technique with reduced memory requirement, computationally 

effective and easier to implement compared to other EAs. 

Also, PSO will not follow survival of the fittest, the principle 

of other EAs. PSO when compared to EP has very fast 

converging characteristics; however it has a slow fine-tuning 

ability of the solution. Also PSO has a more global searching 

ability at the beginning of the run and a local searching ability 

at the end of the run. Therefore, while solving problems with 

more local optima, there are more possibilities for the PSO to 

explore local optima at the end of the run [10,11]. 

Initial simulations were modified to incorporate nearest-

neighbor velocity matching, eliminate ancillary variable, and 

accelerate movement. PSO is similar to genetic algorithm 

(GA) in that the system is initialized by a population of 

random solutions [11]. However, in PSO, each individual of 

the population, called particle, has an adaptable velocity, 
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according to which it moves over the search space. Each 

particle keeps track of its coordinates in hyperspace, which are 

associated with the solution (fitness) it has achieved so far 

[12]. This value is called personal best and is denoted by 

pbest. Additionally among these personal bests, there is only 

one, which has the best fitness. In a search space of D-

dimensions, the ith particle can be represented by a 

vector
Di XXXX ,...,, 21

.  Similarly, the relevant velocity is 

represented by another D-dimensional vector
Di VVVV ,...,, 21

.

The best among pbest is called the global best, gbest. 

(7))()()()( 2211 iiii XpbestrXgbestrwVV

In equation (7), w is known as the inertia weight.  The best-

found position for the given particle is denoted by pbest and 

gbest is the best position known for all particles.  The 

parameters 1 and 2 are set to constant values, which are 

normally given as 2 whereas r1 and r2 are two random 

values, uniformly distributed in [0, 1].  The position of each 

particle is updated every generation. This is done by adding 

the velocity vector to the position vector, as described in 

equation (8) below: 
(8)iii VXX

The PSO algorithm, which is used in this paper to solve the 

optimal control problem, is shown in table 2                                          

TABLE 2.

PSO ALGORITHM

      Step 1: Initialize 

Set index of Global best  (Gbest index) = 1;   

      Step 2: Create population 

Randomize the positions and velocities for  

entire population 

Set the reference value of best position  

PB (i). Fitness 

Update velocity vector 

      Step 3: Calculate P (i). Fitness  

If  P (i). Fitness < reference value of best

position PB (i). Fitness  

Then  Set new reference value of best position  

as P (i). Fitness 

If  PB (i). Fitness < PB (GBestIndex). Fitness 

Then Set new GBestIndex = I 

      Step 4: Calculate the particle velocity and update the  

particle positions using the Eqns. (6) and (7) 

      Step 5: Repeat until Maximum number of generation is  

   reached

The simplest version of PSO lets every individual move 

from a given point to a new one which is a weighted 

combination of the best position ever found (“nostalgia”), and 

of the individual’s best position, pbest.  The choice of the PSO 

algorithm’s parameters (such as the group’s inertia) seems to 

be of utmost importance for the speed and efficiency of the 

algorithm [13 – 15]. Inertia weight plays an important role in 

the convergence of the optimal solution to a best optimal 

value as well as the execution time of the simulation run. The 

inertia weight controls the local and global exploration 

capabilities of PSO [10]. Large inertia weight enables the PSO 

to explore globally and small inertia weight enables it to 

explore locally. So the selection of inertia weight and 

maximum velocity allowed may be problem – dependent.  The 

use of inertia weight, which typically decreases linearly, has 

provided improved performance in optimal control problems. 

IV. SELECTION OF GENETIC OPERATORS AND PSO

PARAMETERS

The main elements of a real coded GA include initial 

population, fitness function, genetic operators (selection, 

crossover and mutation), genetic structure, parameters 

(max_gen, Pc, and Pm) etc. For PSO, the parameters used in 

the algorithms are population size, population dimensions, 

maximum generations, inertia weight and search space. 

A. Initial population 

The initial populations are generated randomly. And the 

number of chromosomes generated per population is equal to 

the dimension of the optimal problem or equal to the number 

of jobs (N) involved in the main objective function. In this 

paper, the number of chromosomes generated per population 

(or the dimension of the optimal control problem) varies from 

10 to 50. 

B. Selection 

Three different types of selection methods are used in this 

paper: Roulette wheel method, Tournament selection method, 

and the hybrid combinations with different proportions of 

roulette wheel and tournament selection methods.  

1) Roulette Wheel Selection Method 

Each individual in the population is assigned a space on the 

roulette wheel, which is proportional to the individual relative 

fitness. Individuals with the largest portion on the wheel have 

the greatest probability to be selected as parent generation for 

the next generation. 
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2) Tournament Selection Method 

In tournament selection, a number Tour of individuals are 

chosen randomly from the population and the best individual 

from this group is selected as a parent. This process is 

repeated to choose individuals often. These selected parents 

produce uniform offspring at random. The parameter for this 

method is the tournament size Tour. Tour takes values ranging 

from         2 - Nind (number of individuals in population). 

3) Hybrid Selection Method 

The hybrid slection method consists of the combination of 

both RWS and TS. We designed the hybrid selection 

operation as a single level hybrid selection method. In this 

technique, 50% of the population size adopts TS procedure 

where as the RWS procedure is used in the remaining 50% of 

the population size.  For example, if we set population size as 

20 then first 10 chromosomes follow TS method and the next 

10 chromosomes follow RWS method. 

C. Crossover

Crossover is the main genetic operator and consists of 

swapping chromosome parts between individuals. Crossover 

is not performed on every pair of individuals; its frequency 

being controlled by a crossover probability (Pc). There are 

several crossover methods available, but here we use hybrid 

combination of Arithmetic crossover method (AMXO), and 

Average Convex crossover (ACXO). 

1) Arithmetic Crossover Method (AMXO) 

The basic concept of this method is borrowed from the 

convex set theory [5,8,9]. Simple arithmetic operators are 

defined with the combination of two vectors (chromosomes) 

as follows:  

(9)1 yxx

(10)1 yxx

where  is a uniformly distributed random variable between 

0 and 1. 

2) Average Convex Crossover Method (ACXO) 

Generally, the weighted average of two vectors x1 and x2

are calculated as follows: 

(11)2211 xx

If the multipliers are restricted as 

(12)00,,1 2121

The weighted form (11) is known as convex combination.

Similarly, arithmetic operators are defined as the 

combination of two chromosomes as follows: 

(13)12211

22111

xxx

xxx

According to the restriction of multipliers, it yields three 

kinds of crossovers, which can be called convex crossover, 

affine crossover, and linear crossover. Among the three 

methods, convex crossover may be the most commonly used 

method [5]. When restricting 1 = 2 = 0.5, it yields a special case, 

which is called as Average convex crossover by Davis or 

Intermediate crossover by Schwefel [9]. 

3) Hybrid Crossover Methods  

In this paper we designed four hybrid crossover methods 

from the above said two crossover operations (AMXO and 

ACXO). In the hybrid cross-over method, 50% of the 

population size adopts AMXO procedure where as the ACXO 

procedure is used in the remaining 50% of the population size.  

We used some other crossover methods like direction based 

crossover, single point crossover but  the above said two 

methods outperform all the other, hence we choose AMXO 

and ACXO for hybrid method.  

In

D.  Mutation  

The final genetic operator is Mutation. It can create a new 

genetic material in the population to maintain the population’s 

diversity. It is nothing but changing a random part of string 

representing the individual.  In this paper, dynamic mutation is 

used.

1) Dynamic Mutation 

Michalewicz [9] proposed this mutation operator, also 

known as non-uniform mutation. It is designed for fine-tuning 

capabilities aimed at achieving high precision. For a given 

parent x, the element xk is randomly selected from the 

following two possible choices:

(14),

,

L

kkkk

k

U

kkk

xxtxxor

xxtxx

The function (t, dx) returns a value in the range [0, dx] 

such that the value of (t, dx) approaches 0 as t increases. 

This property causes the operator to search the space 

uniformly initially (when t is small) and very locally at later 

stages. The function (t, dx) is given as follows: 

(15))1(),( d

T
trdxdxt

where r is a random number from (0,1), T is the maximal 

generation number and  d  is a parameter determining the 

degree of non-uniformity (usually assumed as 2 or 3). 
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E. Elitism

In order to enrich the future generations with specific 

genetic information of the parent with best fitness from the 

current generations, that particular parent with the best fitness 

is preserved in the next generations. This method of 

preserving the elite parent is called elitism. This property is 

incorporated in our proposed algorithms. 

F. Population Size 

From the earlier research, done by Shi, in 1998, it is proved 

that the performance of the standard algorithm is not sensitive 

to the population size.  Based on these results the population 

size in the experiments was fixed at 20 particles in order to 

keep the computational requirements low. The size of the 

population will affect the convergence of the solution. Hence 

we set population size to 20 in our work. 

G. Search Space 

The range in which the algorithm computes the optimal 

control variables is called search space. The algorithm will 

search for the optimal solution in the search space which is 

between 0 an d1. When any of the optimal control value of 

any particle exceeds the searching space, the value will be 

reinitialized. In this paper the lower boundary is set to zero (0) 

and the upper boundary to one (1). 

H. Dimension 

The dimension is the number of independent variables, 

which is identical to the number of jobs considered for 

processing in the hybrid system framework. In this paper, the 

dimension of the optimal control problem varies between 10 

and 50. 

I. Max Generations 

This refers to the maximum number of generations allowed 

for the fitness value to converge with the optimal solution. We 

set 1000 generations for the simulation.

J. Inertia Weight 

When the inertia weight is high (>0.7), the convergence rate 

is faster but the optimal solution is not so optimal, but for the 

lower value of inertia weight (<0.7), the convergence rate is 

slower but the optimal solution is better. The monotonically 

decreasing inertia weight from a higher value to a lower value 

yields the better optimal solution with faster convergence. We 

used all three categories in our algorithms to compare the 

effect of inertia weight.  In the monotonically decreasing 

inertia weight technique, the first generation is simulated with 

the higher value of inertia weight say 0.7, and the last 

generations with lower inertia weight 0.3. So from generation   

1 to 1000, the inertia weight also decreases from 0.7 to 0.3.  

K. Solution acceleration technique 

The convergence of the real coded GA can be accelerated 

greatly by assuming that the best solution in the population is 

closest to the global optimum. If it is true, then searching the 

solution space in this neighborhood will produce solutions 

closer to the global optimum. This can be accomplished by re-

mapping the population after each competition stage in the 

GA algorithm so that all solutions are moved a random 

distance towards the best solution at that generation. This 

results in more solutions in the neighborhood of the minimum 

and hence allows a more thorough search of its surrounds 

[16].   

Mathematically, the solution acceleration technique, which 

is given in (16), can be described as follows: 

(16)xxrxx bb

where         xb =   best solution vector (best individual) in  

                   the population 

              x  =   solution vector (individual) to be re- 

mapped 

              x’ =   re-mapped solution vector 

              r  =   uniformly  distributed  random number   

                   between 0  and 1. 

V. TWO PHASE HYBRID GENETIC ALGORITHM (HRCGA):

The major difference that hybrid GAs can make regarding 

performance enhancement is that they can provide an 

acceptable solution within a relatively short time. In general, 

local search techniques have the advantage of solving the 

problem quickly, though their results are very much 

dependent on the initial starting point; therefore, they can 

easily be trapped in a local optimum. On the other hand, 

genetic algorithm samples a large search space, climbs many 

peaks in parallel, and is likely to lead the search towards the 

most promising area.  However, a GA faces difficulties in a 

fine-tuning of local search; it spends most of the time 

competing between different hills, rather than improving the 

solution along a single hill that the optimal point locates. 

Hence, if one can make use of the advantages of both the local 

and GA techniques, one can improve the search algorithm 

both effectively and efficiently [6, 9, and 17]. 

The proposed hybrid GA combines a standard real coded 

GA and the phase - 2 of conventional search technique. Real 

coded GA takes the place of  the phase - 1 of the search [6, 9], 
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providing the potential near optimum solution, and the     

phase - 2 of a search technique using optimization by direct 

search and systematic reduction in size of the search region 

[18]. Phase - 2 algorithm is applied to rapidly generate a 

precise solution under the assumption that the evolutionary 

search has generated a solution near the global optimum. 

A. Phase – 1 Algorithm 

Real coded GA is implemented as follows: 

1) A population of Np trail solutions is initialized. Each 

solution is taken as a real valued vector with their dimensions 

corresponding to the number of variables. The initial 

components of x are selected in accordance with a uniform 

distribution ranging between 0 and 1. 

2) The fitness score for each solution vector x is evaluated 

using Eq. 4, after converting each solution vector into 

corresponding problem variables xa using upper and lower 

bound vectors. 

3) Three different (RWS, TS and Hybrid) selection method 

are used individually to produce Np offspring from parents. 

4) Hybrid crossover (combination of Arithmetic crossover 

and Average crossover), non-uniform mutation operators and 

solution acceleration technique are applied to offspring to 

generate next generation parents.   

5) The algorithm proceeds to step 2, unless the best solution 

does not change for a pre - specified interval of generations. 

Specifically, the phase - 1 of the hybrid algorithm stops if the 

following condition of eqn.17 is satisfied:  for the feasible best 

solution vector at generation t, x[t], and generation t-1, x[t-1],  

(17)1
1

tx

txtx

j

jj

for a sufficiently small positive value 1, and for all j,  for   

successive Ng1   generations. 

B. Phase - 2 Algorithm 

After the phase - 1 is halted, satisfying the halting condition 

described in the previous section, optimization by direct 

search and systematic reduction in size of the search region 

method is employed in the phase - 2. In the light of the 

solution accuracy, the success rate, and the computation time, 

the best solution vector obtained   form the phase - 1 is used   

as an initial point for the phase - 2.   

The optimization procedure based on direct search and 

systematic reduction in search region is found effective in 

solving various problems in the field of non-linear 

programming.  This procedure handles either inequality or 

equality constraints or the feasible region does not have to be 

convex and no approximations or auxiliary variables are 

required.  The most attractive features are the ease of setting 

up the problem on the computer, speed in obtaining the 

optimum and reliability of the results. For problems where 

more than one local optimum can occur, this method is 

especially useful [18]. This direct search optimization 

procedure is implemented as follows: 

1. The best solution vector obtained from the phase - 1 of 

the hybrid algorithm is used as an initial point x(0) for      

phase - 2 and an initial range vector is defined  as  

(18)*0 RangeRMFR

where Range is defined as the difference between the upper 

and lower bound vectors of x and RMF is the range 

multiplication factor. The RMF value varies between   0 and 

1.  In general, the value of RMF may be selected around 0.5 as 

discussed in simulation results section. 

 2. Generate Ns trail solution vectors around x(0) using 

following relationship, 

(19),1*.00 nrandRxxi

where xi  is   ith trail solution vector,  .* represents element-by-

element multiplication operation and rand (1,n) is a random 

vector, whose elements value   varies from  0 to 1. 

3.  For each feasible trail solution vector find the objective 

function value using eqn.1 and find the trail solution set, 

which minimizes f (x) and equate it to x(0). 

(20)0 Bestxx

where xbest is the trail solution set with minimum f(x) for 

minimization problems and maximum f(x) for maximization 

problems. 

4.  Reduce the range by an amount given by 

(21)1*00 RR

where  is the range reduction factor, whose typical value is 

0.02 or 0.05. 

5.  The algorithm proceeds to step2, unless the best solution 

does not change for a pre - specified interval of iterations or 

maximum number of iterations reached. 

The main reason for the success of this algorithm lies in its 

local search ability. Since the values for the variables are 

always chosen around the best point determined in the 

previous iteration, there is a more likelihood of convergence 

to the optimum solution. In contrast, GAs spends most of the 

time competing between different hills, rather than improving 

the solution along a single hill that the optimal point locates. 
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VI. NUMERICAL EXAMPLE, SIMULATION RESULTS

AND STATISTICAL ANALYSES

In order to compare the validity and usefulness of the 

proposed hybrid real coded GA method, we considered the 

optimal control problem from equations (5) and (6) with the 

following functions:

(22)5.1*3,
2

andxx
u

u ii

i

ii

Now equation (5) becomes, 

(23)3
u

2

,....,

min
1.5

1 i1

N

i

i

N

xJ
uu

(24)),max( )1( iiii uaxxsubjectto

The optimal controls (ui) and cost or fitness (J) for the 

objective function given in equation (22) are computed with 

the following parameter settings. 

The dimension or the number of jobs involved in the 

objective function N = (10,20,30,40,50), Crossover 

probability Pc = 0.8 and Probability of mutation Pm = 0.01.

The maximum number of generations is set as 1000 with the 

population size of 20. 

The arrival sequence (ai for i = 1 to N) for N = (10, 20, 30, 

40, 50), are obtained from the following algorithm given in 

Table 3. 

TABLE 3.

ARRIVAL SEQUENCE FOR HYBRID SYSTEMS.

ab(1) = 0.3 

ab(2) = 0.5 

ab(3) = 0.7 

ab(4) = 1 

For bb = 1 To N/4 

      For aa = 1 To 4 

ab(aa + 4 * bb) = ab(aa) + 1 * bb 

                      Next aa 

Next bb 

For i = 1 To N 

a(i) = ab(i) 

Next i

The number of arrival times, (ai for i = 1 to N) is taken 

according to the dimension of the problem, i.e, the number of 

jobs (N) considered for processing.  

We solved the optimal control problem considered in this 

section, which is given in equations (22 - 24) using three 

proposed 2 phase hybrid GA methods. The proposed 

algorithm adopts roulette wheel selection and the second 

adopts tournament selection and the third provides hybrid of 

both selection techniques.  

We used a hybrid cross over technique, with arithmetic 

cross-over (AMXO) and average cross – over (ACXO) 

methods. The dynamic mutation is the unique choice of 

mutation operation. 

In order to compare the efficacy and validity, and to prove 

the betterment of the proposed two- phase HRCGA method, 

we solved the same optimal problem described in this section 

through three PSO techniques (differs from each other with 

inertia weight), and three conventional RCGA methods 

(differs from each other with the selection procedure adopted). 

All the above nine methods, given in Table (4), are 

simulated 1000 times at different intervals of time, and their 

statistical analyses are obtained. The Mean or average of the 

fitness value obtained in 1000 runs and their Standard 

Deviation (SD) are the basic statistical tests. From these two, 

we calculated the Co-efficient of Variance (CV), which is the 

ratio of standard deviation to Mean. The fourth statistical test 

is Average Deviation (AVEDEV), which will give the average 

of the absolute deviation of the fitness values from their mean,

which are taken in 1000 simulation runs.  The graphical 

comparisons of standard deviation and Average deviation of 

the fitness value over 1000 runs for N = 10 to 50 are shown in 

Fig 8(a-e). Added to these basic analyses, hypothesis t – test 

and   analysis of   variance   (ANOVA) test   also were carried 

out to validate the efficacy of all the nine methods. These 

statistics analysis are presented in Tables 5 – 9.  The graphical 

analyses are done through Box plot, which are shown in 

Figures 5 (a-e).

A box plot, which is shown in Figure 4, provides an 

excellent visual summary of many important aspects of a 

distribution. The box stretches from the lower hinge (defined 

as the 25th percentile) to the upper hinge (the 75th percentile) 

and therefore contains the middle half of the scores in the 

distribution.  The median is shown as a line across the box. 

Therefore 1/4 of the distribution is between this line and the 

top of the box and 1/4 of the distribution is between this line 

and the bottom of the box. 

The nth percentile of a distribution of values is defined as 

the cumulative probability in percent, that is the value that 

bounds the n% of values below and the (100-n)% above it. In 

this report the box plot consists of a plot where 25th, 50th, and 

75th percentiles are drawn. Looking at the box plot the general 

features of the distribution can be evinced. For instance, if all 
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                         Figure 4. A simple Box Plot 

the percentiles of the model that are drawn in the box plot are 

lower than the percentiles of the corresponding 

measurements,. It means that the lower 75 % of the 

predictions is lower than the lower 75 % of measurements. 

This might probably correspond to a modeled distribution 

everywhere lower than the measured one or, less likely, to a 

model distribution much more peaked in the 25 (or less) % of 

higher values. 

Table 4 gives the description of all the nine methods 

considered in this paper. The methods are classified according 

to the optimization algorithm used to compute the optimal 

control of the objective function. The above programes were 

developed both in MATLAB 6.1 and Visual Basic 5.0 

software packages.

For the purpose of comparison, we have considered our 

earlier work on particle swarm optimization (PSO) and real 

coded GA. All the methods are analyzed through hypothesis 

test and finally by fitness regulation of the other methods over 

the best method among all the nine methods. 

TABLE 4.

VARIOUS OF THE EVOLUTIONARY OPTIMIZATION ALGORITHMS

S.No. Type of EA Methods Description 

  PSO - 1    PSO with high inertia weight (I.W = 0.7) 

Particle Swarm  

1 Optimization   PSO - 2    PSO with low inertia weight (I.W = 0.3) 

(PSO)

  PSO - 3    PSO with monotonically decreasing inertia weight from 0.7 to 0.3 

    

  RCGA_RWS    RCGA with roulette wheel selection, dynamic mutation 

   and hybrid cross over 

Conventional

2 Real coded   RCGA_TS    RCGA with Tournament selection, dynamic mutation  

Genetic Algorithm     and hybrid cross over 

(C RCGA)  

  RCGA_HGO    RCGA with hybrid selection ( RWS + TS), dynamic mutation  

   and hybrid cross over 

    

   HRCGA_RWS     Proposed 2 phase HRCGA with roulette wheel selection 

    dynamic mutation and hybrid cross over 

Proposed 2 phase 

3 Hybrid Real coded   HRCGA_TS     Proposed 2 phase HRCGA with Tournament selection,  

Genetic Algorithm      dynamic mutation and hybrid cross over 

(HRCGA)

   HRCGA_HGO     Proposed 2 phase HRCGA with hybrid selection, 

    dynamic mutation and hybrid cross over 
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TABLE 5.

STATISTIC ANALYSES OF FITNESS VALUE FOR N = 10

          

Method No. Statistical Test Average SD CV AVEDEV T-TEST for N = 10 

          

1 PSO - 1 423.54124 0.56570 0.00134 0.38957 Method Nos. P Value Best Method 

2 PSO - 2 414.37031 0.00000 0.00000 0.00000 1 & 2 1.0000 2 

3 PSO - 3 414.37031 0.00000 0.00000 0.00000 2 & 3 0.9994 2 

4 RCGA_RWS 423.02521 0.48518 0.00115 0.36491 2 & 4 0.0000 2 

5 RCGA_TS 415.97974 0.33882 0.00081 0.29353 2 & 5 0.0000 2 

6 RCGA_HGO 415.37357 0.22958 0.00055 0.16616 2 & 6 0.0000 2 

7 HRCGA_RWS 414.37030 0.00001 0.00000 0.00000 2 & 7 0.0000 2 

8 HRCGA_TS 414.37030 0.00001 0.00000 0.00000 2 & 8 1.0000 8 

9 HRCGA_HGO 414.37030 0.00001 0.00000 0.00000 8 & 9 0.9998 9 

          

           Fig 5(a)    ANOVA t – test for N = 10 

Fig 7(a) Convergence of Fitness value over generations  

                 for RCGA algorithms for N = 10 

Fig 6(a) Convergence of Fitness value over generations  

              for PSO algorithms for N = 10 

Fig 8(a) Convergence of Fitness value over generations for  

              proposed HRCGA algorithms for N = 10 
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TABLE 6. 

STATISTIC ANALYSES OF FITNESS VALUE FOR N = 20

          

Method No. Statistical Test Average SD CV AVEDEV T-TEST for N = 20 

          

1 PSO - 1 1390.95048 0.39445 0.00028 0.31133 Method Nos. P Value Best Method 

2 PSO - 2 1331.29258 0.28106 0.00021 0.24329 1 & 2 1.0000 2 

3 PSO - 3 1331.08606 0.17978 0.00014 0.14429 2 & 3 0.9994 3 

4 RCGA_RWS 1381.55553 0.69174 0.00050 0.39690 3 & 4 0.0000 3 

5 RCGA_TS 1361.19747 0.79200 0.00058 0.63184 3 & 5 0.0000 3 

6 RCGA_HGO 1356.81273 0.41574 0.00031 0.31490 3& 6 0.0000 3 

7 HRCGA_RWS 1331.60000 0.29361 0.00022 0.23853 3 & 7 0.0000 3 

8 HRCGA_TS 1330.93667 0.05561 0.00004 0.05137 3 & 8 1.0000 8 

9 HRCGA_HGO 1330.92667 0.05208 0.00004 0.04185 8 & 9 0.7625 9 

          

Fig 5(b) ANOVA t – test for N = 20 

Fig 7(b)  Convergence of Fitness value over generations for 

RCGA algorithms for N = 20 

Fig 6(b) Convergence of Fitness value over generations  

               for PSO algorithms for N = 20 

Fig 8(b) Convergence of Fitness value over generations  

              for  proposed HRCGA algorithms for N = 20 
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TABLE 7.

STATISTIC ANALYSES OF FITNESS VALUE FOR N = 30

          

Method No. Statistical Test Average SD CV AVEDEV T-TEST for N =30 

          

1 PSO - 1 2906.40568 1.08340 0.00037 0.87947 Method Nos. P Value Best Method 

2 PSO - 2 2805.24470 0.21571 0.00008 0.14058 1 & 2 1.0000 2 

3 PSO - 3 2804.79883 0.14538 0.00005 0.10923 2 & 3 0.8007 3 

4 RCGA_RWS 2898.92640 0.99552 0.00034 0.81273 3 & 4 0.0000 3 

5 RCGA_TS 2880.37656 0.88922 0.00031 0.63029 3 & 5 0.0000 3 

6 RCGA_HGO 2858.79713 0.79978 0.00028 0.51809 3& 6 0.0000 3 

7 HRCGA_RWS 2807.00833 0.09841 0.00004 0.05982 3 & 7 0.0000 3 

8 HRCGA_TS 2804.09877 0.06939 0.00002 0.06057 3 & 8 1.0000 8 

9 HRCGA_HGO 2803.99745 0.05465 0.00002 0.03682 8 & 9 1.0000 9 

          

Fig 5(c)     ANOVA t – test for N = 30        Fig 6(c) Convergence of Fitness value over generations for  

               PSO algorithms for N = 30

Fig 7(c) Convergence of Fitness value over generations for  

               RCGA algorithms for N = 30 

Fig 8(c) Convergence of Fitness value over generations for       

           proposed HRCGA algorithms for N = 30 
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TABLE 8.

STATISTIC ANALYSES OF FITNESS VALUE FOR N = 40

          

Method No. Statistical Test Average SD CV AVEDEV T-TEST for N =40 

          

1 PSO - 1 5015.96607 1.12387 0.00022 0.91158 Method Nos. P Value Best Method 

2 PSO - 2 4915.58055 0.65593 0.00011 0.50865 1 & 2 1.0000 2 

3 PSO - 3 4915.45251 0.62702 0.00013 0.50056 2 & 3 0.9829 3 

4 RCGA_RWS 5006.66472 0.97196 0.00019 0.76077 3 & 4 0.0000 3 

5 RCGA_TS 4987.95148 0.94147 0.00019 0.67175 3 & 5 0.0000 3 

6 RCGA_HGO 4986.87711 0.88543 0.00018 0.61804 3& 6 0.0000 3 

7 HRCGA_RWS 4924.22750 0.65949 0.00013 0.54541 3 & 7 0.0000 3 

8 HRCGA_TS 4914.47004 0.53144 0.00011 0.43363 3 & 8 1.0000 8 

9 HRCGA_HGO 4913.15394 0.52451 0.00011 0.39546 8 & 9 0.9934 9 

          

Fig 5(d)     ANOVA t – test for N = 40 

Fig 7(d) Convergence of Fitness value over generations for  

RCGA algorithms for N = 40 

Fig 6(d) Convergence of Fitness value over generations for  

                     PSO algorithms for N = 40

Fig 8 (d) Convergence of Fitness value over generations for 

proposed HRCGA algorithms for N = 40
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TABLE 9.

STATISTIC ANALYSES OF FITNESS VALUE FOR N = 50

          

Method No. Statistical Test Average SD CV AVEDEV T-TEST for N =50 

          

1 PSO - 1 7782.94335 0.90988 0.00012 0.71395 Method Nos. P Value Best Method 

2 PSO - 2 7744.00010 0.49792 0.00006 0.38174 1 & 2 1.0000 2 

3 PSO - 3 7743.72344 0.49009 0.00006 0.37372 2 & 3 0.9830 3 

4 RCGA_RWS 7761.02276 1.26549 0.00016 1.00445 3 & 4 0.0000 3 

5 RCGA_TS 7759.42501 1.18389 0.00015 0.93502 3 & 5 0.0000 3 

6 RCGA_HGO 7748.89319 0.99000 0.00013 0.71907 3& 6 0.0000 3 

7 HRCGA_RWS 7744.62652 0.50900 0.00007 0.38848 3 & 7 0.0000 3 

8 HRCGA_TS 7730.98000 0.49158 0.00006 0.37883 3 & 8 1.0000 8 

9 HRCGA_HGO 7729.97667 0.42563 0.00006 0.28133 8 & 9 0.9937 9 

          

Fig 5(e) ANOVA t – test for N = 50

Fig 7(e) Convergence of Fitness value over generations for  

RCGA algorithms for N = 50 

Fig 6(e) Convergence of Fitness value over generations for  

                     PSO algorithms for N = 50

Fig 8(e) Convergence of Fitness value over generations for       

           proposed HRCGA algorithms for N = 50 
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Fig 9(a) Comparison of SD and AVEDEV for N = 10 

Fig 9(c)  Comparison of  SD and AVEDEV for N = 30 

Fig  9(e) Comparison of  SD and AVEDEV for N = 50 

Fitness Regulation:

The percentage of deviation of the average fitness 

value for the other eight methods from the best 

among nine methods are calculated using equation 

(25), for analyzing the better   performance of the   

proposed algorithm.  They are presented in Table 10. 

Fig 9(b) Comparison of SD and AVEDEV for N = 20 

Fig 9(d)  Comparison of  SD and AVEDEV for N = 40 

Fig 10. Percentage of Fitness value Regulation of other methods   

            from the best proposed method (HRCGA_HGO)
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TABLE 10.

THE FITNESS VALUE REGULATION OF OTHER METHODS FROM THE BEST-PROPOSED METHOD (HRCGA_HGO)

No .of Jobs PSO - 1 PSO - 2 PSO - 3 RCGA_RWS RCGA_TS RCGA_HGO HRCGA_RWS HRCGA_TS

10 -2.2132 0.0000 0.0000 -2.0887 -0.3884 -0.2421 0.0000 0.0000 

20 -4.5099 -0.0275 -0.0120 -3.8040 -2.2744 -1.9450 -0.0506 -0.0008 

30 -3.6522 -0.0445 -0.0286 -3.3855 -2.7239 -1.9543 -0.1074 -0.0036 

40 -1.1640 -0.0494 -0.0468 -1.9033 -1.5224 -1.5005 -0.2254 -0.0268 

50 -0.6852 -0.1814 -0.1778 -0.4016 -0.3810 -0.2447 -0.1895 -0.0039 

         

VII DISCUSSION AND CONCLUSIONS

In this paper, new two-phase hybrid real coded genetic 

algorithms with hybrid genetic operators are proposed. This 

algorithm (2-phase HRCGA) can out perform conventional 

genetic algorithms and PSO in the sense that hybrid GAs 

make it possible to improve both the quality of the solution 

and reduce the computing expenses.  The phase -1 uses 

standard real coded genetic algorithm, while optimization 

by direct search with systematic reduction in the size of the 

search region is employed in the phase - 2. This hybrid 

algorithm handles either inequality or equality constraints 

and the feasible region does not have to be convex and 

gradient or other auxiliary information’s are not required.  

In order to prove the effectiveness of the proposed 

algorithm, this method is applied to typical constrained 

optimization function. The results obtained are compared 

with other methods. The outcome of the study clearly 

demonstrates the effectiveness and robustness that a hybrid 

genetic algorithm (HGA) can achieve over a conventional 

RCGA and PSO algorithms.  From the results, it is very 

clear that hybrid GA  not only improves the success rate but 

also decreases the number function evaluations and 

computation time. 

In this paper, three different evolutionary algorithms are 

considered. Three algorithms for each of these three 

methods, a total of nine methods are considered.  In order 

to compare the validity and usefulness of the proposed 

hybrid real coded GA method with the other evolutionary 

methods, 1000 simulated results for each method are taken 

at different timings. In order to hasten the convergence in 

hybrid real coded GA's solution and the population 

dimension (Pop_Size), maximum of number of generation 

(max_gen), are set to 20 and 1000 respectively. The 

performance of different algorithms is compared with 

respect to the solution accuracy in the fitness, the standard 

deviations, co-efficient variance, average deviation, 

ANOVA t-test, and the percentage of deviation in the 

fitness from the proposed best method.  

From the results stated in Table 5 – 9, it is obvious that 

the method - 9 (HRCGA_HGO) is best followed by   

method - 8  (HRCGA_TS). This clearly establishes the fact 

that hybrid selections together with hybrid crossover 

methods yield better solutions. This is the most significant 

outcome of the experiments performed. These 

combinations have been shown to work efficiently with 

regard to an optimal control problem here but it is believed 

that these might be equally efficient with regard to all other 

problems where hybrid real coded GA can be used. 

A. From the ANOVA test and t – test: 

The hypothesis t – Test and ANOVA test are also carried 

out to prove the best method among all the nine methods 

considered here, and their P-values are also recorded. The 

ANOVA test results are drawn using Box plots. From the 

box plot figures, which are given in Fig 5 (a-e), it is 

obvious that method - 9 (HRCGA_HGO) gives the best 

results among all other methods. This clearly indicates that 

the hybrid selection with the hybrid combination of AMXO 

and ACXO gives the best results. 

B. From the convergence of fitness graphs: 

Fig. 6 (a-e), Fig 7(a-e), and Fig 8(a-e) show the 

convergence characteristics of PSO, real coded and hybrid 

real coded genetic algorithms respectively for number of 

jobs N = 10, 20, 30, 40 and 50. It is clearly seen from the 

graphs that the proposed two phase HRCGA methods 

converge very earlier, around generation 200, which is not 

so in other methods (see Fig 7(a-e)). PSO methods 

convergences faster but only for less number of jobs.  For 

higher number of jobs, PSO also takes more number of 

generations to converge with the final optimal value (see 

Fig 5(a-e)). In the case of the conventional RCGA methods 

(Fig 6(a-e)), the convergences of fitness value with the 

optimal value take more number of generations, which will 

in turn take longer computation time. It clearly shows the 
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inefficiency of real coded GA in fine local tuning.  If, for 

the entire search, real coded GA were employed then there 

would be a mere wastage of amount computation time 

without any change in solution vector and objective 

function value. Since the two phase HRCGA method 

converges at less number of generations, this algorithm 

takes less computation time in comparison to the other 

methods in order to obtain the optimal solution. 

C. From the SD and Average dev. Graph: 

It is very obvious that the standard deviation and average 

deviations are the quality measures of statistical analyses. 

In order to obtain the optimal value of the fitness function, 

the optimization algorithms were run 1000 times in 

different intervals of time. If the algorithm gives nearly 

same solution in each and every run, then we can say that 

the algorithm is consistent and stable for solving the 

optimal control problem.  

In order to prove the consistency and stability on the 

optimal solution, standard deviations and average 

deviations of the fitness value are taken through the 1000 

simulated runs. If the standard deviation is very minimum, 

it implies that the solution obtained in each of 1000 runs are 

more or less equal and the differences between the 

solutions over each runs are less. Therefore, if an algorithm 

provides very low standard deviation then it can be 

concluded that the algorithm is consistent. From Fig 8 (a-e), 

it is observed that method 9 provides a very low standard 

deviation among all other methods. 

The average deviation gives the measure of how much 

the solution is deviated from the average (mean) value of 

the fitness. For the algorithm to be on best side, it should 

produce a very low average deviation. From Fig 8 (a-e), it 

is very clearly seen that the 9th method gives a very low 

average deviation. Hence we strongly conclude that the 9th

method is the best among the others. 

D. From the Fitness regulation: 

The same conclusions can also be drawn from Table 10, 

where percentage of deviations of fitness values, called as 

fitness regulation, were obtained through methods 1 to 8 

from the proposed best method; method - 9 (HRCGA_HGO)

is recorded. For smaller number of jobs, method - 8 

(HRCGA_TS) and method - 3 (PSO-3) also yield the 

optimum value but when the numbers of jobs increase they 

are differ from method - 9. 

The graphical representation of this fitness regulation is 

shown in Fig 10. The negative values of this fitness 

regulation indicate that methods 1 – 8 are inferior to 

method - 9. The zero fitness regulation for the particular 

methods indicate that the optimum value is same with the 

proposed best method - 9. Based on this, it can be 

concluded that the hybrid real coded GA with the hybrid 

genetic operators gives the best optimal value over the 

other methods. 

In other words, the superior performance of the hybrid 

combinations of the genetic operators for two phase hybrid 

real coded genetic algorithms has been clearly established 

in this paper. 
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