Search results for: Genetic Polymorphism.
629 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint
Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, ¬G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.
Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487628 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221627 Multimodal Biometric Authentication Using Choquet Integral and Genetic Algorithm
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
The Choquet integral is a tool for the information fusion that is very effective in the case where fuzzy measures associated with it are well chosen. In this paper, we propose a new approach for calculating fuzzy measures associated with the Choquet integral in a context of data fusion in multimodal biometrics. The proposed approach is based on genetic algorithms. It has been validated in two databases: the first base is relative to synthetic scores and the second one is biometrically relating to the face, fingerprint and palmprint. The results achieved attest the robustness of the proposed approach.
Keywords: Multimodal biometrics, data fusion, Choquet integral, fuzzy measures, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519626 Designing and Implementing a Novel Scheduler for Multiprocessor System using Genetic Algorithm
Authors: Iman Zangeneh, Mostafa Moradi, Mazyar Baranpouyan
Abstract:
System is using multiple processors for computing and information processing, is increasing rapidly speed operation of these systems compared with single processor systems, very significant impact on system performance is increased .important differences to yield a single multi-processor cpu, the scheduling policies, to reduce the implementation time of all processes. Notwithstanding the famous algorithms such as SPT, LPT, LSPT and RLPT for scheduling and there, but none led to the answer are not optimal.In this paper scheduling using genetic algorithms and innovative way to finish the whole process faster that we do and the result compared with three algorithms we mentioned.
Keywords: Multiprocessor system, genetic algorithms, time implementation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562625 The Rank-scaled Mutation Rate for Genetic Algorithms
Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac
Abstract:
A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.
Keywords: Genetic algorithms, mutation rate control, adaptive mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671624 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task
Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat
Abstract:
The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947623 Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study
Authors: Khaled M. EL-Naggar, Khaled A. AL-Rumaih
Abstract:
This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.
Keywords: Forecasting, Least error squares, Least absolute Value, Genetic algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726622 Genetic Algorithm and Padé-Moment Matching for Model Order Reduction
Authors: Shilpi Lavania, Deepak Nagaria
Abstract:
A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.
Keywords: Model Order Reduction (MOR), control theory, Markov parameters, time moments, genetic algorithm, Single Input Single Output (SISO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3538621 Using Genetic Programming to Evolve a Team of Data Classifiers
Authors: Gregor A. Morrison, Dominic P. Searson, Mark J. Willis
Abstract:
The purpose of this paper is to demonstrate the ability of a genetic programming (GP) algorithm to evolve a team of data classification models. The GP algorithm used in this work is “multigene" in nature, i.e. there are multiple tree structures (genes) that are used to represent team members. Each team member assigns a data sample to one of a fixed set of output classes. A majority vote, determined using the mode (highest occurrence) of classes predicted by the individual genes, is used to determine the final class prediction. The algorithm is tested on a binary classification problem. For the case study investigated, compact classification models are obtained with comparable accuracy to alternative approaches.Keywords: classification, genetic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789620 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349619 Modeling and Simulation of Robotic Arm Movement using Soft Computing
Authors: V. K. Banga, Jasjit Kaur, R. Kumar, Y. Singh
Abstract:
In this research paper we have presented control architecture for robotic arm movement and trajectory planning using Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is used to compensate the uncertainties like; movement, friction and settling time in robotic arm movement. The genetic algorithms and fuzzy logic is used to meet the objective of optimal control movement of robotic arm. This proposed technique represents a general model for redundant structures and may extend to other structures. Results show optimal angular movement of joints as result of evolutionary process. This technique has edge over the other techniques as minimum mathematics complexity used.Keywords: Kinematics, Genetic algorithms (GAs), Fuzzy logic(FL), Optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013618 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection
Authors: K.M. Faraoun, A. Boukelif
Abstract:
This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].Keywords: Genetic programming, patterns classification, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714617 400 kW Six Analytical High Speed Generator Designs for Smart Grid Systems
Authors: A. El Shahat, A. Keyhani, H. El Shewy
Abstract:
High Speed PM Generators driven by micro-turbines are widely used in Smart Grid System. So, this paper proposes comparative study among six classical, optimized and genetic analytical design cases for 400 kW output power at tip speed 200 m/s. These six design trials of High Speed Permanent Magnet Synchronous Generators (HSPMSGs) are: Classical Sizing; Unconstrained optimization for total losses and its minimization; Constrained optimized total mass with bounded constraints are introduced in the problem formulation. Then a genetic algorithm is formulated for obtaining maximum efficiency and minimizing machine size. In the second genetic problem formulation, we attempt to obtain minimum mass, the machine sizing that is constrained by the non-linear constraint function of machine losses. Finally, an optimum torque per ampere genetic sizing is predicted. All results are simulated with MATLAB, Optimization Toolbox and its Genetic Algorithm. Finally, six analytical design examples comparisons are introduced with study of machines waveforms, THD and rotor losses.Keywords: High Speed, Micro - Turbines, Optimization, PM Generators, Smart Grid, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457616 Optimal Facility Layout Problem Solution Using Genetic Algorithm
Authors: Maricar G. Misola, Bryan B. Navarro
Abstract:
Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing and service sector. It is an optimization problem on which the main objective is to obtain the efficient locations, arrangement and order of the facilities. In the literature, there are numerous facility layout problem research presented and have used meta-heuristic approaches to achieve optimal facility layout design. This paper presented genetic algorithm to solve facility layout problem; to minimize total cost function. The performance of the proposed approach was verified and compared using problems in the literature.
Keywords: Facility Layout Problem, Genetic Algorithm, Material Handling Cost, Meta-heuristic Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4746615 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084614 Design of Gravity Dam by Genetic Algorithms
Authors: Farzin Salmasi
Abstract:
The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4340613 Metaheuristic Algorithms for Decoding Binary Linear Codes
Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi
Abstract:
This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085612 Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm
Authors: B. Jabbari, N. Tahouni, M. H. Panjeshahi
Abstract:
In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.Keywords: Absorption Heat Pump, Genetic Algorithm, Kraft Industry, Pinch Technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944611 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes
Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294610 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm
Authors: D. Singh, R. Yousefi, M. Boroushaki
Abstract:
Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.
Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206609 A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem
Authors: Cha-Hwa Lin, Je-Wei Hu
Abstract:
The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).Keywords: Traveling salesman problem, hybrid geneticalgorithm, priority selection, 2-OPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562608 Development of a Software System for Management and Genetic Analysis of Biological Samples for Forensic Laboratories
Authors: Mariana Lima, Rodrigo Silva, Victor Stange, Teodiano Bastos
Abstract:
Due to the high reliability reached by DNA tests, since the 1980s this kind of test has allowed the identification of a growing number of criminal cases, including old cases that were unsolved, now having a chance to be solved with this technology. Currently, the use of genetic profiling databases is a typical method to increase the scope of genetic comparison. Forensic laboratories must process, analyze, and generate genetic profiles of a growing number of samples, which require time and great storage capacity. Therefore, it is essential to develop methodologies capable to organize and minimize the spent time for both biological sample processing and analysis of genetic profiles, using software tools. Thus, the present work aims the development of a software system solution for laboratories of forensics genetics, which allows sample, criminal case and local database management, minimizing the time spent in the workflow and helps to compare genetic profiles. For the development of this software system, all data related to the storage and processing of samples, workflows and requirements that incorporate the system have been considered. The system uses the following software languages: HTML, CSS, and JavaScript in Web technology, with NodeJS platform as server, which has great efficiency in the input and output of data. In addition, the data are stored in a relational database (MySQL), which is free, allowing a better acceptance for users. The software system here developed allows more agility to the workflow and analysis of samples, contributing to the rapid insertion of the genetic profiles in the national database and to increase resolution of crimes. The next step of this research is its validation, in order to operate in accordance with current Brazilian national legislation.
Keywords: Database, forensic genetics, genetic analysis, sample management, software solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177607 Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms
Authors: Mazhar B. Tayel, Amr H. Yassin
Abstract:
A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.
Keywords: PHEMT, Genetic Algorithms, small signal modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266606 Phenotypic Characterization of the Zebu Cattle in Tajikistan
Authors: A. Norezzine, N. Y. Rebouh, M. Souadkia, D. Parpura, A. Gadzhikurbanov, E. A. Gladyr, P. M. Klenovitsky, A. A. Nikishov, A. Dranidis
Abstract:
This article deals with the genetic characteristics of samples Schwyz-zebu cattle from three farms of the Republic of Tajikistan on 10 microsatellite markers (STS). Hence, the present study was carried out to evaluate the heterozygosity in the population and to characterize this breed by identifying DNA markers using microstatellites. Microsatellites often have multiple alleles and may have heterozygosity frequencies of 70% or more. This makes them highly informative for genetic analysis. A total of ten microsatellite primers were used for microsatellite analysis in genomic DNA of Zebu cattle. The amplified products were analysed for polymorphic alleles and their frequencies. The resulting information can be used in dealing with the conservation and sustainable use of genetic resources of the Tajik Schwyz-zebu cattle.
Keywords: DNA, gene pool, Schwyz-zebu cattle, microsatellite loci.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893605 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933604 Reducing Power in Error Correcting Code using Genetic Algorithm
Authors: Heesung Lee, Joonkyung Sung, Euntai Kim
Abstract:
This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.Keywords: Error correcting codes, genetic algorithm, non-linearpower optimization, Hamming code, Hsiao code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190603 Fuzzy PID based PSS Design Using Genetic Algorithm
Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P
Abstract:
This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system
Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753602 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.
Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303601 A Novel Methodology Proposed for Optimizing the Degree of Hybridization in Parallel HEVs using Genetic Algorithm
Abstract:
In this paper, a new Genetic Algorithm (GA) based methodology is proposed to optimize the Degree of Hybridization (DOH) in a passenger parallel hybrid car. At first step, target parameters for the vehicle are decided and then using ADvanced VehIcle SimulatOR (ADVISOR) software, the variation pattern of these target parameters, across the different DOHs, is extracted. At the next step, a suitable cost function is defined and is optimized using GA. In this paper, also a new technique has been proposed for deciding the number of battery modules for each DOH, which leads to a great improvement in the vehicle performance. The proposed methodology is so simple, fast and at the same time, so efficient.Keywords: Degree of Hybridization (DOH), Electric Motor, Emissions, Fuel Economy, Genetic Algorithm (GA), Hybrid ElectricVehicle (HEV), Vehicle Performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847600 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
Authors: M. Senthil Arumugam, M.V.C. Rao
Abstract:
This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.
Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901