Search results for: Capacitive Sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 561

Search results for: Capacitive Sensors

411 High Perfomance Communication Protocol for Wireless Ad-Hoc Sensor Networks

Authors: Toshihiko Sasama, Takahide Yanaka, Kazunori Sugahara, Hiroshi Masuyama

Abstract:

In order to monitor for traffic traversal, sensors can be deployed to perform collaborative target detection. Such a sensor network achieves a certain level of detection performance with the associated costs of deployment and routing protocol. This paper addresses these two points of sensor deployment and routing algorithm in the situation where the absolute quantity of sensors or total energy becomes insufficient. This discussion on the best deployment system concluded that two kinds of deployments; Normal and Power law distributions, show 6 and 3 times longer than Random distribution in the duration of coverage, respectively. The other discussion on routing algorithm to achieve good performance in each deployment system was also addressed. This discussion concluded that, in place of the traditional algorithm, a new algorithm can extend the time of coverage duration by 4 times in a Normal distribution, and in the circumstance where every deployed sensor operates as a binary model.

Keywords: binary sensor, coverage rate, power energy consumption, routing algorithm, sensor deployment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
410 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi

Abstract:

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
409 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using an Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes the attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: Inertial Measurement Unit, Laser Range Finder, Real-time recognition of the ground shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
408 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: Authentication, key-session, security, wireless sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
407 Security Architecture for At-Home Medical Care Using Sensor Network

Authors: S.S.Mohanavalli, Sheila Anand

Abstract:

This paper proposes a novel architecture for At- Home medical care which enables senior citizens, patients with chronic ailments and patients requiring post- operative care to be remotely monitored in the comfort of their homes. This architecture is implemented using sensors and wireless networking for transmitting patient data to the hospitals, health- care centers for monitoring by medical professionals. Patients are equipped with sensors to measure their physiological parameters, like blood pressure, pulse rate etc. and a Wearable Data Acquisition Unit is used to transmit the patient sensor data. Medical professionals can be alerted to any abnormal variations in these values for diagnosis and suitable treatment. Security threats and challenges inherent to wireless communication and sensor network have been discussed and a security mechanism to ensure data confidentiality and source authentication has been proposed. Symmetric key algorithm AES has been used for encrypting the data and a patent-free, two-pass block cipher mode CCFB has been used for implementing semantic security.

Keywords: data confidentiality, integrity, remotemonitoring, source authentication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
406 A Modern Review of the Non-Invasive Continuous Blood Glucose Measuring Devices and Techniques for Remote Patient Monitoring System

Authors: Muhibul Haque Bhuyan

Abstract:

Diabetes disease that arises from the higher glucose level due to insulin shortage or insulin opposition in the human body has become a common disease in the world. No medicine can cure it completely. However, by taking medicine, maintaining diets, and having exercises regularly, a diabetes patient can keep his glucose level within the specified limits and in this way, he/she can lead a normal life like a healthy person. But to control glucose levels, a patient needs to monitor them regularly. Various techniques are being used over the last four decades. This modern review article aims to provide a comparative study report on various blood glucose monitoring techniques in a very concise and organized manner. The review mainly emphasizes working principles, cost, technology, sensors, measurement types, measurement accuracy, advantages, and disadvantages, etc. of various techniques and then compares among each other. Besides, the use of algorithms and simulators for the growth of this technology is also presented. Finally, current research trends of this measurement technology have also been discussed.

Keywords: blood glucose measurement, sensors, measurement devices, invasive and non-invasive techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986
405 The Mechanistic Deconvolutive Image Sensor Model for an Arbitrary Pan–Tilt Plane of View

Authors: S. H. Lim, T. Furukawa

Abstract:

This paper presents a generalized form of the mechanistic deconvolution technique (GMD) to modeling image sensors applicable in various pan–tilt planes of view. The mechanistic deconvolution technique (UMD) is modified with the given angles of a pan–tilt plane of view to formulate constraint parameters and characterize distortion effects, and thereby, determine the corrected image data. This, as a result, does not require experimental setup or calibration. Due to the mechanistic nature of the sensor model, the necessity for the sensor image plane to be orthogonal to its z-axis is eliminated, and it reduces the dependency on image data. An experiment was constructed to evaluate the accuracy of a model created by GMD and its insensitivity to changes in sensor properties and in pan and tilt angles. This was compared with a pre-calibrated model and a model created by UMD using two sensors with different specifications. It achieved similar accuracy with one-seventh the number of iterations and attained lower mean error by a factor of 2.4 when compared to the pre-calibrated and UMD model respectively. The model has also shown itself to be robust and, in comparison to pre-calibrated and UMD model, improved the accuracy significantly.

Keywords: Image sensor modeling, mechanistic deconvolution, calibration, lens distortion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
404 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Authors: Mohamed K. Watfa

Abstract:

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
403 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
402 Design of Tracking Controllers for Medical Equipment Holders Using AHRS and MEMS Sensors

Authors: Seung You Na, Joo Hyun Jung, Jin Young Kim, Mohammad AhangarKiasari

Abstract:

There are various kinds of medical equipment which requires relatively accurate positional adjustments for successful treatment. However, patients tend to move without notice during a certain span of operations. Therefore, it is common practice that accompanying operators adjust the focus of the equipment. In this paper, tracking controllers for medical equipment are suggested to replace the operators. The tracking controllers use AHRS sensor information to recognize the movements of patients. Sensor fusion is applied to reducing the error magnitudes through linear Kalman filters. The image processing of optical markers is included to adjust the accumulation errors of gyroscope sensor data especially for yaw angles. The tracking controller reduces the positional errors between the current focus of a device and the target position on the body of a patient. Since the sensing frequencies of AHRS sensors are very high compared to the physical movements, the control performance is satisfactory. The typical applications are, for example, ESWT or rTMS, which have the error ranges of a few centimeters.

Keywords: AHRS, Sensor fusion, Tracking control, Position and posture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
401 Fiber Optic Sensors for Hydrogen Peroxide Vapor Measurement

Authors: H. Akbari Khorami, P. Wild, N. Djilali

Abstract:

This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian Blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.

Keywords: Chemical deposition, fiber-optic sensors, hydrogen peroxide vapor, prussian blue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
400 Study of Shaft Voltage on Short Circuit Alternator with Static Frequency Converter

Authors: Arun Kumar Datta, Manisha Dubey, Shailendra Jain

Abstract:

Electric machines are driven nowadays by static system popularly known as soft starter. This paper describes a thyristor based static frequency converter (SFC) to run a large synchronous machine installed at a short circuit test laboratory. Normally a synchronous machine requires prime mover or some other driving mechanism to run. This machine doesn’t need a prime mover as it operates in dual mode. In the beginning SFC starts this machine as a motor to achieve the full speed. Thereafter whenever required it can be converted to generator mode. This paper begins with the various starting methodology of synchronous machine. Detailed of SFC with different operational modes have been analyzed. Shaft voltage is a very common phenomenon for the machines with static drives. Various causes of shaft voltages in perspective with this machine are the main attraction of this paper.

Keywords: Capacitive coupling, electric discharge machining, inductive coupling, Shaft voltage, static frequency converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3270
399 Smart Cane Assisted Mobility for the Visually Impaired

Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick

Abstract:

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6075
398 Capacitive Air Bubble Detector Operated at Different Frequencies for Application in Hemodialysis

Authors: Mawahib Gafare Abdalrahman Ahmed, Abdallah Belal Adam, John Ojur Dennis

Abstract:

Air bubbles have been detected in human circulation of end-stage renal disease patients who are treated by hemodialysis. The consequence of air embolism, air bubbles, is under recognized and usually overlooked in daily practice. This paper shows results of a capacitor based detection method that capable of detecting the presence of air bubbles in the blood stream in different frequencies. The method is based on a parallel plates capacitor made of platinum with an area of 1.5 cm2 and a distance between the two plates is 1cm. The dielectric material used in this capacitor is Dextran70 solution which mimics blood rheology. Simulations were carried out using RC circuit at two frequencies 30Hz and 3 kHz and results compared with experiments and theory. It is observed that by injecting air bubbles of different diameters into the device, there were significant changes in the capacitance of the capacitor. Furthermore, it is observed that the output voltage from the circuit increased with increasing air bubble diameter. These results demonstrate the feasibility of this approach in improving air bubble detection in Hemodialysis.

Keywords: Air bubbles, Hemodialysis, Capacitor, Dextran70, Air bubbles diameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
397 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

Authors: Mohamed Watfa, William Daher, Hisham Al Azar

Abstract:

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
396 Investigating Performance of Numerical Distance Relay with Higher Order Antialiasing Filter

Authors: Venkatesh C., K. Shanti Swarup

Abstract:

This paper investigates the impact on operating time delay and relay maloperation when 1st,2nd and 3rd order analog antialiasing filters are used in numerical distance protection. RC filter with cut-off frequency 90 Hz is used. Simulations are carried out for different SIR (Source to line Impedance Ratio), load, fault type and fault conditions using SIMULINK, where the voltage and current signals are fed online to the developed numerical distance relay model. Matlab is used for plotting the impedance trajectory. Investigation results shows that, about 75 % of the simulated cases, numerical distance relay operating time is not increased even-though there is a time delay when higher order filters are used. Relay maloperation (selectivity) also reduces (increases) when higher order filters are used in numerical distance protection.

Keywords: Antialiasing, capacitive voltage transformers, delay estimation, discrete Fourier transform (DFT), distance measurement, low-pass filters, source to line impedance ratio (SIR), protective relaying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
395 Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO

Authors: Bilel Gassara, Mahmoud Abdellaoui, Nouri Masmoud

Abstract:

The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.

Keywords: GSM/DCS/DECT/UMTS/WiMax, ISPD PLL, keep and capture range, Multi-Band, Synthesizer, Wireless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
394 Incorporation of SVS CBVLC Supplementary Controller for Damping SSR in Power System

Authors: Narendra Kumar, Sanjiv Kumar

Abstract:

Static VAR System (SVS) is a kind of FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper presents a systematic approach for designing SVS supplementary controller, which is used to improve the damping of power system oscillation. The combined bus voltage and line current (CBVLC) supplementary controller has been developed and incorporated in the SVS control system located at the middle of the series compensated long transmission line. Damping of torsional stresses due to subsynchronous resonance resulting from series capacitive compensation using CBVLC is investigated in this paper. Simulation results are carried out with MATLAB/Simulink on the IEEE first benchmark model (FBM). The simulation results show that the oscillations are satisfactorily damped out by the SVS supplementary controller. Time domain simulation is performed on power system and the results demonstrate the effectiveness of the proposed controller.

Keywords: Bus voltage and line current (BVLC), series compensation, sub synchronous resonance (SSR), supplementary controller, eigenvalue investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
393 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
392 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring

Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek

Abstract:

In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.

Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
391 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
390 Cooperative Energy Efficient Routing for Wireless Sensor Networks in Smart Grid Communications

Authors: Ghazi AL-Sukkar, Iyad Jafar, Khalid Darabkh, Raed Al-Zubi, Mohammed Hawa

Abstract:

Smart Grids employ wireless sensor networks for their control and monitoring. Sensors are characterized by limitations in the processing power, energy supply and memory spaces, which require a particular attention on the design of routing and data management algorithms. Since most routing algorithms for sensor networks, focus on finding energy efficient paths to prolong the lifetime of sensor networks, the power of sensors on efficient paths depletes quickly, and consequently sensor networks become incapable of monitoring events from some parts of their target areas. In consequence, the design of routing protocols should consider not only energy efficiency paths, but also energy efficient algorithms in general. In this paper we propose an energy efficient routing protocol for wireless sensor networks without the support of any location information system. The reliability and the efficiency of this protocol have been demonstrated by simulation studies where we compare them to the legacy protocols. Our simulation results show that these algorithms scale well with network size and density.

Keywords: Data-centric storage, Dynamic Address Allocation, Sensor networks, Smart Grid Communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
389 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
388 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks

Authors: M.K.Jeya Kumar

Abstract:

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
387 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen

Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.

Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
386 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
385 RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants

Authors: Javier Barbaran, Manuel Dıaz, Inaki Esteve, Bartolome Rubio

Abstract:

Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.

Keywords: MANETs, Mobile computing, Radiation monitoring, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
384 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18
383 A Smart Monitoring System for Preventing Gas Risks in Indoor

Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim

Abstract:

In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.

Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720
382 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: S. Behnam Malekzadeh, I. Kerr, T. Kaempffer, T. Harper, A Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and BPs at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including BP elevations and coordinates. 13 (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ± 55 cm, while the actual results showed that 69% of predicted elevations were within ± 79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ± 99 cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: Case-Based Reasoning, CBR, geological feature, geology, piezometer, pressure sensor, core logging, dam construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241